Back to EveryPatent.com



United States Patent 6,244,251
Wada ,   et al. June 12, 2001

Air vent construction of subtank in engine

Abstract

A subsidiary tank 89 provided on a side wall of an engine block on an outboard engine system temporarily stores a fuel supplied from a fuel tank not shown and provided on a hull, and pressurizes the fuel to a high pressure to deliver it to a fuel injection valve 94. An upper space in the subsidiary tank 89 is connected to an inner space of an intake silencer 76 through two air vent pipes L.sub.7, L.sub.8. Even when a fuel vapor liquefies in the intake silencer 76 at the time of engine suspension, the liquefied fuel is caught at a bottom of the intake silencer 76 having a large volume with no possibility of flowing out.


Inventors: Wada; Tetsu (Wako, JP); Shidara; Sadafumi (Wako, JP)
Assignee: Honda Giken Kogyo Kabushiki Kaisha (Tokyo, JP)
Appl. No.: 308673
Filed: June 4, 1999
PCT Filed: December 19, 1997
PCT NO: PCT/JP97/04699
371 Date: June 4, 1999
102(e) Date: June 4, 1999
PCT PUB.NO.: WO98/27332
PCT PUB. Date: June 25, 1998
Foreign Application Priority Data

Dec 19, 1996[JP]8-340221

Current U.S. Class: 123/468; 123/509
Intern'l Class: F02M 055/02
Field of Search: 123/468,509,516,514,456,73 A,510,195 P


References Cited
U.S. Patent Documents
4809666Mar., 1989Baltz123/516.
4844043Jul., 1989Keller123/516.
5438963Aug., 1995Tsunoda et al.123/54.
5617821Apr., 1997Tsunoda et al.123/195.
5669358Sep., 1997Osakab123/509.
5783259Jul., 1998McDonald427/447.
5865160Feb., 1999Kato123/516.
Foreign Patent Documents
41 06 012 A 1Sep., 1991DE.
43 03 713 A 1Sep., 1993DE.
724652Feb., 1955GB.
2 217 388Oct., 1989GB.
3-64658Mar., 1991JP.
5-86997Apr., 1993JP.
8-232765Sep., 1996JP.

Primary Examiner: Yuen; Henry C.
Assistant Examiner: Gimie; Mahmoud M
Attorney, Agent or Firm: Arent Fox Kintner Plotkin & Kahn, PLLC

Claims



What is claimed is:

1. An air vent structure in a subsidiary tank in an engine comprising a subsidiary tank for temporarily storing fuel to be supplied to a fuel injection valve, air vent pipes, each of which has one end communicating with an upper space in said subsidiary tank and the other end communicating with an intake silencer of an intake system which is mounted at a location upstream of a throttle body in a direction of flowing of intake air, and a pair of air vent passages which are defined in an upper portion of said subsidiary tank to open at one end into the upper space in said subsidiary tank, said air vent passages being connected at the other end to a pair of the air vent pipes, said air vent passages being disposed to cross each other at intermediate portions thereof.

2. A subsidiary tank in an outboard engine system, comprising a plurality of opened portions which are open to an upper space in said subsidiary tank, and air vent passage means which are connected at respective one ends to said opened portions, wherein locations of said opened portions are determined such that air venting of the inside of said subsidiary tank through said opened portions in response to a variation in a posture of said outboard engine system is assured irrespective of positions of the other ends of said air vent passage means.

3. The subsidiary tank according to claim 2, wherein said opened portions are located distantly from each other in a lateral direction of said outboard engine system.

4. The subsidiary tank according to claim 2, wherein said air vent passage means include a pair of passages that cross each other.

5. The subsidiary tank according to claim 3, wherein said air vent passage means include a pair of passages that cross each other.
Description



FIELD OF THE INVENTION

The present invention relates to an engine including a subsidiary tank for temporarily storing fuel to be supplied to a fuel injection valve, and an air vent pipe which has one end communicating with an upper space in the subsidiary tank and the other end communicating with an intake system, and particularly, to an air vent structure in the subsidiary tank.

BACKGROUND ART

There is an engine known from Japanese Patent Application Laid-open No. 3-64658, in which an upper space in a subsidiary tank for temporarily storing fuel to be supplied to a fuel injection valve is connected to a portion near a throttle valve through an air vent pipe.

In the known engine, there is a possibility that the vapor of fuel discharged from the subsidiary tank through the air vent pipe into an intake system may be liquefied within a throttle body, when the engine is stopped.

DISCLOSURE OF THE INVENTION

The present invention has been accomplished with the above circumstance in view, and it is an object of the present invention to provide an air vent structure in a subsidiary tank, wherein the treatment of the vapor of fuel discharged from the subsidiary tank into the intake system can be performed appropriately.

To achieve the above object, according to a first aspect and feature of the present invention, there is provided an air vent structure in a subsidiary tank in an engine comprising a subsidiary tank for temporarily storing fuel to be supplied to a fuel injection valve, and an air vent pipe, which has one end communicating with an upper space in the subsidiary tank and the other end communicating with an intake system, characterized in that the other end of each of the air vent pipes communicates with an intake silencer which is mounted at a location upstream of a throttle body in a direction of flowing of intake air.

With the above arrangement, since the other end of the air vent pipe communicates with an intake silencer mounted at the location upstream of the throttle body in the direction of flowing of intake air, even if fuel discharged from the subsidiary tank into the intake silencer is liquefied when the engine is stopped, the fuel can be caught in the intake silencer having a sufficient volume and prevented from flowing to the outside.

According to a second aspect and feature of the present invention, in addition to the first feature, there is provided an air vent structure in a subsidiary tank in an engine including a pair of air vent passages are defined in an upper portion of the subsidiary tank to open at one end into the upper space in the subsidiary tank, the air vent passages being connected at the other end to a pair of the air vent pipes, the air vent passages being disposed to cross each other at intermediate portions thereof.

With the above arrangement, the pair of air vent passages are defined in an upper portion of the subsidiary tank to open at one end into an upper space in the subsidiary tank and to be connected at the other end to a pair of the air vent pipes, and disposed to cross each other at intermediate portions thereof. Therefore, even if the engine falls down sideways, the fuel is prevented from flowing out of the subsidiary tank due to the gravity, and moreover, the fuel in the subsidiary tank is prevented from being forced out into an intake system due to the internal pressure.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1 to 9B show an embodiment of the present invention, wherein

FIG. 1 is a side view of the entire arrangement of an outboard engine system;

FIG. 2 is an enlarged sectional view taken along a line 2--2 in FIG. 1;

FIG. 3 is a view taken in the direction of an arrow 3 in FIG. 2;

FIG. 4 is a view taken in the direction of an arrow 4 in FIG. 3;

FIGS. 5A to 5D are views showing shapes of intake pipes;

FIG. 6 is a sectional view taken along a line 6--6 in FIG. 3;

FIG. 7 is an enlarged sectional view of an essential portion shown in FIG. 3;

FIG. 8 is a view taken in the direction of an arrow 8 in FIG. 7;

FIG. 9A is a sectional view taken along a line 9A--9A in FIG. 8; and

FIG. 9B is a sectional view taken along a line 9B--9B in FIG. 8.

BEST MODE FOR CARRYING OUT THE INVENTION

The mode for carrying the present invention will now be described by way of an embodiment shown in FIGS. 1 to 9B.

As shown in FIG. 1, an outboard engine system O includes a mount case 2 coupled to an upper portion of an extension case 1. A water-cooled serial 4-cylinder and 4-cycle engine E is supported on an upper surface of the mount case 2 with a crankshaft 15 disposed vertically. An under-case 3 having an upper surface opened is coupled to the mount case 2, and an engine cover 4 is detachably mounted on an upper portion of the under-case 3. An under-cover 5 is mounted between a lower edge of the under-case 3 and an edge of the extension case 1 near its upper end so as to cover an outside of the mount case 2.

The engine E includes a cylinder block 6, a crankcase 7, a cylinder head 8, a head cover 9, a lower belt cover 10 and an upper belt cover 11. Lower surfaces of the cylinder block 6 and the crankcase 7 are supported on the upper surface of the mount case 2. Pistons 13 are slidably received in four cylinders 12 defined in the cylinder block 6 and are connected to the crankshaft 15 disposed vertically, through connecting rods 14.

A driving shaft 17 connected to a lower end of the crankshaft 15 along with a flywheel 16 extends downwards within the extension case 1 and is connected at its lower end to a propeller shaft 21 having a propeller 20 at its rear end, through a bevel gear mechanism 19 provided within a gear case 18. A shift rod 22 is connected at its lower end to a front portion of the bevel gear mechanism 19 to change over the direction of rotation of the propeller shaft 21.

A swivel shaft 25 is fixed between an upper mount 23 provided on the mount case 2 and a lower mount 24 provided on the extension case 1. A swivel case 26 for rotatably supporting the swivel shaft 25 is vertically swingably carried on a stern bracket 27 mounted at a stern S through a tilting shaft 28.

An oil pan 29 and an exhaust pipe 30 are coupled to a lower surface of the mount case 2. An exhaust gas discharged from the exhaust pipe 30 into a space within the extension case 1 is discharged through a space within the gear case 18 and the inside of the a boss portion of the propeller 20 into the water.

As can be seen from FIG. 2, the engine E accommodated in an engine room 36 defined by the under-case 3 and the engine cover 4 includes two secondary balancer shafts 37 and 38 disposed in parallel to the crankshaft 15, and a single cam shaft 39. The secondary balancer shafts 37 and 38 are supported in the cylinder block 6 at locations nearer the cylinder head 8 than the crankshaft 15, and the cam shaft 39 is supported on mating faces of the cylinder head 8 and the head cover 9.

A pulley assembly 44 is fixed to an upper end of the crankshaft 15 and comprised of a cam shaft drive pulley 40, a secondary balancer shaft drive pulley 41, a generator drive pulley 42 and a cooling fan 43 which are formed integrally with one another. A cam shaft follower pulley 45 fixed to an upper end of the cam shaft 39 and the cam shaft drive pulley 40 are connected to each other by an endless belt 46. The diameter of the cam shaft drive pulley 40 is set at one half of the diameter of the cam shaft follower pulley 45, so that the cam shaft 39 is rotated at a speed which is one half of the speed of the crankshaft 15. A tension pulley 49 mounted at one end of an arm 48 pivotally supported by a pin 47 is urged against an outer surface of the endless belt 46 by the resilient force of a spring 50, thereby providing a predetermined tension to the endless belt 46.

A pair of secondary balancer shaft follower pulleys 52 and 53 are fixed respectively to an intermediate shaft 51 mounted in the vicinity of one of the secondary balancer shaft 37 and to the other secondary balancer shaft 38. The secondary balancer shaft follower pulleys 52 and 53 and the secondary balancer shaft drive pulley 41 are connected to each other by the endless belt 54. A tension pulley 57 is mounted at one end of an arm 56 pivotally supported by a pin 55 and urged against an outer surface of the endless belt 54 by the resilient force of a spring 58, thereby providing a predetermined tension to the endless belt 54. An intermediate shaft 52 and the one secondary balancer shaft 37 are interconnected by a pair of gears (not shown) having the same diameter, and the diameter of the secondary balancer shaft drive pulley 41 is set at two times the diameter of the secondary balancer shaft follower pulleys 52 and 53. Therefore, the pair of secondary balancer shafts 37 and 38 are rotated in opposite directions at a speed two times that of the crankshaft 15.

A generator 62 is supported by two bolts 61, 61 on a bracket 60 which is fixed to an upper surface of the crankcase 7 by two bolts 59, 59. A generator follower pulley 64 fixed to a rotary shaft 63 of the generator 62 and the generator drive pulley 42 are interconnected by the endless belt 65, and the generator 62 is driven by the crankshaft 15. Since the generator 62 is mounted separately from the engine E in the above manner, the general-purpose generator 62 can be used, which is convenient for the cost and moreover, the capacity of the generator 62 can easily be increased, as compared with the case where the generator is incorporated into the flywheel mounted on the crankshaft 15.

An engine hanger 66 engaged by a hook of a chain block or a crane in hanging down the outboard engine system O is fixed by two bolts 67, 67 between the cam shaft 39 and the other secondary balancer shaft 38. The engine hanger 66 is positioned slightly at the rear of the position of the gravity center of the outboard engine system O, and it is taken into consideration that the outboard engine system O hung down by the engine hanger 66 can easily be mounted at and removed from the stern S as a forward-leaned attitude in which the lower end of the outboard engine system has leaped up slightly rearwards.

Three belts 46, 54 and 65 for driving the cam shaft 39, the secondary balancer shafts 37 and 38 and the generator 62 are accommodated in a belt chamber 68 defined by the lower and upper belt covers 10 and 11. The lower belt cover 10 has an opening 10.sub.1 surrounding the periphery of the generator 62, and a plurality of slits 10.sub.2 in its bottom wall on the right of the crankshaft 15, so that air is introduced into the belt chamber 68 through the opening 10.sub.1 and the slits 10.sub.2. An upper end of the engine hanger 66 protrudes upwards through the upper belt cover 11.

As can be seen from FIGS. 2 to 4, a pair of left and right slit-shaped air intake bores 4.sub.1, 4.sub.1 are defined in a rear surface of an upper portion of the engine cover 4, and a guide plate 75 extending forwards from lower edges of the air intake bores 4.sub.1, 4.sub.1 is fixed to an inner surface of the engine cover 4. Therefore, air drawn from the air intake bores 4.sub.1, 4.sub.1 flows forwards through a space defined between an upper wall of the engine cover 4 and the guide plate 75 to enter the engine room 36 from a front edge of the guide plate 75. A ventilating duct 75.sub.1 (see FIG. 4) is formed in a right side of the guide plate 75, so that its lower end communicates with an opening 11.sub.1 defined in a right side of the upper belt cover 11 and its upper end communicates with an opening 4.sub.2 defined in a right side of the upper portion of the engine cover 4. The ventilating duct 75.sub.1 permits the belt chamber 68 surrounded by the lower and upper belt covers 10 and 11 to be put into communication with the open air, thereby performing the ventilation.

The structure of an intake system of the engine E will be described below with reference to FIGS. 2 to 5D.

An intake silencer 76 is fixed to a front surface of the crankcase 7 by three bolts 77. The intake silencer 76 comprises a box-shaped body portion 78, and a duct portion 79 coupled to a left side of the body portion 78. The duct portion 79 has an intake opening 79.sub.1 provided downwards in its lower end, and a communication bore 79.sub.2 provided in its upper end to communicate with an internal space in the body portion 78. A throttle body 80 is disposed in a right side of the body portion 78 of the intake silencer 76 and connected to the body portion 78 through a short intake duct 35 having flexibility.

The throttle body 80 is connected and fixed to an intake manifold 85 which will be described below. The intake manifold 85 is disposed to extend along a right side of the engine E and is integrally provided with an elbow 81, a surge tank 82, four intake pipes 83a, 83b, 83c and 83d and a mounting flange 84. The elbow 81 serves to change the flow of intake air by approximately 90.degree. from the flow along the front surface of the crankcase 7 to the flow along a right side of the crankcase 7. The elbow 81 may be a duct having flexibility, but is integral with the surge tank 82, the intake pipes 83a, 83b, 83c and 83d and the mounting flange 84 in order to support and fix the throttle body 80 in this embodiment.

A connecting portion between the elbow 81 and the surge tank 82 of the intake manifold 85 has a size vertically smaller than upper and lower ends of the surge tank 82. The intake manifold 85 is fixed at this portion to a right sidewall of the crankcase 7 by bolts 86.sub.1, 86.sub.1 ; 86.sub.2, 86.sub.2 and two brackets 86.sub.3, 86.sub.3 having loose bores. Further, the mounting flange 84 is fixed to an intake manifold mounting surface 8.sub.1 formed on a right side of the cylinder head 8 by a plurality of bolts 87.

As can be seen from FIG. 3, the first intake pipe 83a which is first from above extends substantially horizontally along a lower surface of the lower belt cover 10, but the second to fourth intake pipes 83b, 83c and 83d which are second, third and fourth from above are inclined upwards in a forward direction from the mounting flange 84 toward the surge tank 82. The inclination angle of the fourth intake pipe 83d is large; the inclination angle of the third intake pipe 83c is medium, and the inclination angle of the second intake pipe 83b is small. By disposing the intake pipes 83b, 83c and 83d in the inclined states in the above manner, fuel blown back from fuel injection valves 94 (which will be described hereinafter) into the intake pipes 83b, 83c and 83d can immediately be returned into the cylinders 12 by the gravity, and moreover, a space can be ensured below the surge tank 82 and the fourth intake pipe 83d, and a high-pressure fuel supplying means which will be described hereinafter can be disposed in this space.

The lengths of the intake pipes 83a, 83b, 83c and 83d exert a large influence to the output from the engine E under a pulsating effect of the intake system. However, if the inclination angles of the intake pipes 83a, 83b, 83c and 83d are different from one another as described above, the length of the horizontal first intake pipe 83a is the shortest, and the length of the fourth intake pipe 83d having the large inclination angle is the largest. Therefore, in this embodiment, dispersion of the lengths of the intake pipes is compensated by offsetting the positions of connections at which upstream ends of the four intake pipes 83a, 83b, 83c and 83d are connected to the surge tank 82 with respect to the intake manifold mounting surface 8.sub.1 of the cylinder head 8 to which the mounting flange 84 at the downstream end is fixed, as shown in FIGS. 4 to 5D. More specifically, the offset amounts Da, Db, Dc and Dd of the first, second, third and fourth intake pipes 83a, 83b, 83c and 83d from the intake manifold mounting surface 8.sub.1 are set, so that the offset amount of the intake pipe is larger, as the inclination angle of the intake pipe is smaller, i.e., a relation, Da>Db>Dc>Dd is established.

As a result, the decrement in length of the first intake pipe 83a shown in FIG. 5A due to the horizontal disposition thereof is compensated by the large offset amount Da, and the increment in length of the fourth intake pipe 83d shown in FIG. 5D due to the disposition thereof in the largely inclined state is compensated by the small offset amount Dd, whereby the lengths of the four intake pipes 83a, 83b, 83c and 83d can substantially be equalized to one another. By eliminating the dispersion of the lengths of the four intake pipes 83a, 83b, 83c and 83d in the above manner, a reduction in output from the engine E can be prevented.

The structure of a fuel supply system in the engine E will be described below with reference to FIGS. 2 to 4 and 7 to 9B.

Two low-pressure fuel pumps 88, 88 each comprising a plunger pump are mounted in parallel on a rear surface of the head cover 9, so that the fuel drawn from a fuel tank (not shown) mounted within a boat through a fuel supplying pipe L.sub.1 is supplied by the low-pressure fuel pumps 88, 88 through a fuel supplying pipe L.sub.2 into a subsidiary tank 89 mounted on a right side of the cylinder block 6. As can be seen from FIG. 6, a pump driving rocker arm 103 is coaxially supported on an intake rocker arm shaft 102 supporting an intake rocker arm 101 thereon, so that one end of the pump driving rocker arm 103 abuts against a pump cam 104 provided on the cam shaft 39, while the other end abuts against a plunger 105 of the low-pressure fuel pumps 88, 88, whereby the low-pressure fuel pumps 88, 88 are driven by the cam shaft 39.

As can be seen from FIGS. 3, 7 and 8, the subsidiary tank 89 is divided into two portions: a lower-side body portion 89.sub.1 and an upper-side cap 89.sub.2. The body portion 89.sub.1 is fixed to two bosses formed on the fourth intake pipe 83d by bolts 106, 106 and fixed to the cylinder block 6 by two bolts 107, 107. A float valve 90 for regulating the fuel level and a high-pressure fuel pump 91 comprising an electromagnetic pump are accommodated within the subsidiary tank 89.

The float valve 90 comprises an on-off valve 108 mounted at a location where the fuel supplying pipe L.sub.2 extending from the low-pressure fuel pumps 88, 88 is connected to the subsidiary tank 89, a float 109 for moving upward and downward following the fuel level and for opening and closing the on-off valve 108, and a guide member 110 for guiding the upward and downward movements of the float 109. The float valve 90 is adapted to open the on-off valve 108 to introduce the fuel from the low-pressure pumps 88, 88 into the subsidiary tank 89, when the fuel level is lowered, and to close the on-off valve 108 to block the reception of the fuel from the low-pressure pumps 88, 88, when the fuel level is raised. The high-pressure pump 91 is disposed vertically and adapted to pump the fuel drawn from a strainer 111 disposed to extend along a bottom wall of the subsidiary tank 89, through a fuel supplying pipe L.sub.3 into a high-pressure filter 92 which is fixed to a front portion of the subsidiary tank 89 by a band 112.

A fuel rail 93 is fixed to the mounting flange 84 of the intake manifold 85 by a plurality of bolts 113, and four fuel injection valves 94 corresponding to the four cylinders 12 are fixed to the mounting flange 84, so that the fuel supplied from the high-pressure filter 92 through a fuel supplying pipe L.sub.4 to a lower end of the fuel rail 93 is distributed to the four fuel injection valves 94. A regulator 95 is mounted as a surplus fuel feeding-back means at an upper end of the fuel rail 93 and adapted to regulate the pressure of the fuel supplied to the fuel injection valves 94 and to return a surplus amount of the fuel to the subsidiary tank 89 through a fuel returning pipe L.sub.5. To regulate the preset pressure in the regulator 95, the regulator 95 and the surge tank 82 are interconnected through a negative pressure pipe L.sub.6.

The subsidiary tank 89, the high-pressure fuel pump 91, the high-pressure filter 92, the fuel rail 93 and the regulator 95 form a high-pressure fuel supplying means 96.

To prevent the fuel from flowing out of the subsidiary tank 89 when the outboard engine system O falls down sideways, an upper space in the subsidiary tank 89 and the body portion 78 of the intake silencer 76 are interconnected by two air vent pipes L.sub.7 and L.sub.8, as shown in FIGS. 3 and 4. As can be seen from FIGS. 7 to 9B, a pair of couplers 36a and 36b are mounted in a laterally isolated manner at a longitudinally central portion of an upper surface of the cap 89.sub.2 of the subsidiary tank 89. One of the couplers 36a to which the air vent pipe L.sub.8 is connected, communicates with the upper space 89.sub.3 in the subsidiary tank 89 through an L-shaped air vent passage 37a extending in the other direction in an upper wall of the cap 89.sub.2, and the other coupler 36b to which the air vent pipe L.sub.7 is connected, communicates with the upper space 89.sub.3 in the subsidiary tank 89 through an L-shaped air vent passage 37b extending in one direction in the upper wall of the cap 89.sub.2. Namely, the pair of air vent passages 37a and 37b are disposed to cross each other.

The upper space 89.sub.3 in the subsidiary tank 89 is connected to the intake silencer 76 through the two air vent pipes L.sub.7 and L.sub.8 and hence, the internal pressure in the subsidiary tank 89 is prevented from being reduced with the consumption of the fuel caused by the operation of the engine E, whereby the supplying of the fuel to the fuel injection valves 94 can be carried out without hindrance. The vapor of the fuel supplied to the intake silencer 76 during operation of the engine E is drawn through the intake manifold 85 into the engine E, but when the engine E is stopped, the fuel vapor is liquefied within the intake silencer 76. However, the fuel resulting from the liquefying of the fuel vapor is caught on the bottom of the intake silencer 76 having a sufficient volume and hence, there is not a possibility that such fuel may flow outside the intake system. When the operation of the engine E is restarted, the fuel caught on the bottom of the intake silencer 76 is vaporized and drawn into the engine E.

When the outboard engine system O removed from the boat body is stored in a sideways-fallen state, the level of the fuel remaining within the subsidiary tank 89 is changed in a direction perpendicular to that in a usual state, but even if an opened end of either one of the air vent passages 37a and 37b is submerged under the fuel level, the other opened end is certainly exposed above the fuel level. Therefore, even if the internal pressure in the subsidiary tank 89 is raised due to a variation in temperature, such pressure is escaped into the intake silencer 76 through either one of the air vent passages 37a and 37b having the opened end exposed above the fuel level and through the air vent pipes L.sub.7 and L.sub.8 connected to such air vent passages and hence, the fuel in the subsidiary tank 89 cannot be forced into the intake silencer 76 through the air vent pipes L.sub.7 and L.sub.8. In addition, since the pair of air vent passages 37a and 37b are defined to cross each other, even if one end of each of the air vent passages 37a and 37b is submerged under the fuel level, the other end is exposed above the fuel level and hence, the flowing-out of the fuel due to the gravity is prevented.

Since the air vent passages 37a and 37b are provided at the substantially longitudinally central portion of the subsidiary tank 89, the opened ends of the air vent passages 37a and 37b cannot be submerged under the fuel level, even if the outboard engine system O is tilted during traveling in shallows.

When the engine E is to be assembled, the high-pressure fuel supplying means 96 is previously assembled to the intake manifold 85 to form a subassembly, whereby the number of assembling steps can be decreased to enhance the workability. More specifically, the subsidiary tank 89 having the float valve 90 and the high-pressure fuel pump 91 incorporated therein is fixed by the two bolts 106, 106 to the third and fourth intake pipes 83c and 83d of the intake manifold 85 having the fuel injection valves 94 mounted to the mounting flange 84 and further, the high-pressure filter 92 is fixed to the subsidiary tank 89 using the band 112. The fuel rail 93 connecting the four fuel injection valves 94 together is fixed to the mounting flange 84 of the intake manifold 85 by the bolts 113, and the regulator 95 is fixed to the fuel rail 93.

Then, one end of the fuel supplying pipe L.sub.2 is connected to the float valve 90 of the subsidiary tank 89. The high-pressure fuel pump 91 of the subsidiary tank 89 and the high-pressure filter 92 are interconnected by the fuel supplying pipe L.sub.3, and the high-pressure filter 92 and the lower end of the fuel rail 93 are interconnected by the fuel supplying pipe L.sub.4. In addition, the regulator 95 and the subsidiary tank 89 are interconnected by the fuel returning pipe L.sub.5 and further, the regulator 95 and the surge tank 82 are interconnected by the negative pressure pipe L.sub.6. Thus, if the high-pressure fuel supplying means 96 and the intake manifold 85 are previously assembled as the subassembly, the assembling can be completed only by fixing the intake manifold 85 to the cylinder head 8 by the plurality of bolts 87 and fixing the subsidiary tank 89 to the cylinder block 6 by the two bolts 107, 107 and then, connecting the other end of the fuel supplying pipe L.sub.2 to the low-pressure fuel pumps 88, 88. By previously assembling the high-pressure fuel supplying means 96 to the intake manifold 85 to form the subassembly in the above manner, the number of assembling steps can be remarkably decreased.

Although the embodiment of the present invention has been described in detail, it will be understood that the present invention is not limited to the above-described embodiment, and various modifications in design may be made without departing the subject matter of the present invention.

For example, the engine E of the outboard engine system O has been illustrated in the embodiment, but the present invention is applicable to an engine used in an application other than the outboard engine system O.


Top