Back to EveryPatent.com



United States Patent 6,227,654
Silverbrook May 8, 2001

Ink jet printing mechanism

Abstract

A fluid ejection apparatus is disclosed including a trough having side walls and an exposed roof the trough being substantially filled with fluid; a paddle vane located within the trough and offset from one wall when the paddle vane is in a quiescent position; an actuation mechanism attached to the paddle vane such that, upon activation of the actuation mechanism, the paddle vane is caused to move towards the one wall, resulting in an increase in pressure in the fluid between the one wall and the paddle vane, resulting in a consequential ejection of fluid via the exposed roof. Ideally, the present invention can be utilized in an ink jet printing system. The actuation mechanism can be interconnected to the paddle vane via an arm extending over one edge of the exposed roof and the actuation mechanism can comprise a coiled thermal actuator having a first conductive arm and a second substantially non-conductive arm, the conductive arm expanding upon electrical resistive heating to thereby cause the actuation of the thermal actuator. The first conductive arm can comprise substantially titanium diboride and the second non-conductive arm can comprise substantially silicon nitride. The actuation mechanism can operate in the ambient atmosphere.


Inventors: Silverbrook; Kia (Balmain, AU)
Assignee: Silverbrook Research Pty Ltd (Balmain, AU)
Appl. No.: 112812
Filed: July 10, 1998
Foreign Application Priority Data

Jul 15, 1997[AU]PO7991
Dec 12, 1997[AU]PP0890

Current U.S. Class: 347/54; 347/20; 347/44
Intern'l Class: B41J 002/015; B41J 002/135; B41J 002/04
Field of Search: 347/44,54,20


References Cited
U.S. Patent Documents
5903380May., 1999Motamedi et al.359/224.
Foreign Patent Documents
404001051Jan., 1992JP347/54.

Primary Examiner: Barlow; John
Assistant Examiner: Do; An H.

Parent Case Text



CROSS REFERENCES TO RELATED APPLICATIONS

The following Australian provisional patent applications are hereby incorporated cross-reference. For the purposes of location and identification, U.S. patent applications identified by their U.S. patent application serial numbers (USSN) are listed alongside the Australian applications from which the U.S. patent applications claim the right of priority.

                          U.S. PAT./PATENT APPLI-
                          CATION (CLAIMING RIGHT
    CROSS-REFERENCED      OF PRIORITY FROM
    AUSTRALIAN            AUSTRALIAN
    PROVISIONAL PATENT    PROVISIONAL               DOCKET
    APPLICATION NO.       APPLICATION)              NO.
    PO7991                09/113,060                ART01
    PO8505                09/113,070                ART02
    PO7988                09/113,073                ART03
    PO9395                09/112,748                ART04
    PO8017                09/112,747                ART06
    PO8014                09/112,776                ART07
    PO8025                09/112,750                ART08
    PO8032                09/112,746                ART09
    PO7999                09/112,743                ART10
    PO7998                09/112,742                ART11
    PO8031                09/112,741                ART12
    PO8030                09/112,740                ART13
    PO7997                09/112,739                ART15
    PO7979                09/113,053                ART16
    PO8015                09/112,738                ART17
    PO7978                09/113,067                ART18
    PO7982                09/113,063                ART19
    PO7989                09/113,069                ART20
    PO8019                09/112,744                ART21
    PO7980                09/113,058                ART22
    PO8018                09/112,777                ART24
    PO7938                09/113,224                ART25
    PO8016                09/112,804                ART26
    PO8024                09/112,805                ART27
    PO7940                09/113,072                ART28
    PO7939                09/112,785                ART29
    PO8501                09/112,797                ART30
    PO8500                09/112,796                ART31
    PO7987                09/113,071                ART32
    PO8022                09/112,824                ART33
    PO8497                09/113,090                ART34
    PO8020                09/112,823                ART38
    PO8023                09/113,222                ART39
    PO8504                09/112,786                ART42
    PO8000                09/113,051                ART43
    PO7977                09/112,782                ART44
    PO7934                09/113,056                ART45
    PO7990                09/113,059                ART46
    PO8499                09/113,091                ART47
    PO8502                09/112,753                ART48
    PO7981                09/113,055                ART50
    PO7986                09/113,057                ART51
    PO7983                09/113,054                ART52
    PO8026                09/112,752                ART53
    PO8027                09/112,759                ART54
    PO8028                09/112,757                ART56
    PO9394                09/112,758                ART57
    PO9396                09/113,107                ART58
    PO9397                09/112,829                ART59
    PO9398                09/112,792                ART60
    PO9399                6,106,147                 ART61
    PO9400                09/112,790                ART62
    PO9401                09/112,789                ART63
    PO9402                09/112,788                ART64
    PO9403                09/112,795                ART65
    PO9405                09/112,749                ART66
    PP0959                09/112,784                ART68
    PP1397                09/112,783                ART69
    PP2370                09/112,781                DOT01
    PP2371                09/113,052                DOT02
    PO8003                09/112,834                Fluid01
    PO8005                09/113,103                Fluid02
    PO9404                09/113,101                Fluid03
    PO8066                09/112,751                IJ01
    PO8072                09/112,787                IJ02
    PO8040                09/112,802                IJ03
    PO8071                09/112,803                IJ04
    PO8047                09/113,097                IJ05
    PO8035                09/113,099                IJ06
    PO8044                09/113,084                IJ07
    PO8063                09/113,066                IJ08
    PO8057                09/112,778                IJ09
    PO8056                09/112,779                IJ10
    PO8069                09/113,077                IJ11
    PO8049                09/113,061                IJ12
    PO8036                09/112,818                IJ13
    PO8048                09/112,816                IJ14
    PO8070                09/112,772                IJ15
    PO8067                09/112,819                IJ16
    PO8001                09/112,815                IJ17
    PO8038                09/113,096                IJ18
    PO8033                09/113,068                IJ19
    PO8002                09/113,095                IJ20
    PO8068                09/112,808                IJ21
    PO8062                09/112,809                IJ22
    PO8034                09/112,780                IJ23
    PO8039                09/113,083                IJ24
    PO8041                09/113,121                IJ25
    PO8004                09/113,122                IJ26
    PO8037                09/112,793                IJ27
    PO8043                09/112,794                IJ28
    PO8042                09/113,128                IJ29
    PO8064                09/113,127                IJ30
    PO9389                09/112,756                IJ31
    PO9391                09/112,755                IJ32
    PP0888                09/112,754                IJ33
    PP0891                09/112,811                IJ34
    PP0890                09/112,812                IJ35
    PP0873                09/112,813                IJ36
    PP0993                09/112,814                IJ37
    PP0890                09/112,764                IJ38
    PP1398                09/112,765                IJ39
    PP2592                09/112,767                IJ40
    PP2593                09/112,768                IJ41
    PP3991                09/112,807                IJ42
    PP3987                09/112,806                IJ43
    PP3985                09/112,820                IJ44
    PP3983                09/112,821                1J45
    PO7935                09/112,822                IJM01
    PO7936                09/112,825                IJM02
    PO7937                09/112,826                IJM03
    PO8061                09/112,827                IJM04
    PO8054                09/112,828                IJM05
    PO8065                6,071,750                 IJM06
    PO8055                09/113,108                IJM07
    PO8053                09/113,109                IJM08
    PO8078                09/113,123                IJM09
    PO7933                09/113,114                IJM10
    PO7950                09/113,115                IJM11
    PO7949                09/113,129                IJM12
    PO8060                09/113,124                IJM13
    PO8059                09/113,125                IJM14
    PO8073                09/113,126                IJM15
    PO8076                09/113,119                IJM16
    PO8075                09/113,120                IJM17
    PO8079                09/113,221                IJM18
    PO8050                09/113,116                IJM19
    PO8052                09/113,118                IJM20
    PO7948                09/113,117                IJM21
    PO7951                09/113,113                IJM22
    PO8074                09/113,130                IJM23
    PO7941                09/113,110                IJM24
    PO8077                09/113,112                IJM25
    PO8058                09/113,087                IJM26
    PO8051                09/113,074                IJM27
    PO8045                6,111,754                 IJM28
    PO7952                09/113,088                IJM29
    PO8046                09/112,771                IJM30
    PO9390                09/112,769                IJM31
    PO9392                09/112,770                IJM32
    PP0889                09/112,798                IJM35
    PP0887                09/112,801                IJM36
    PP0882                09/112,800                IJM37
    PP0874                09/112,799                IJM38
    PP1396                09/113,098                IJM39
    PP3989                09/112,833                IJM40
    PP2591                09/112,832                IJM41
    PP3990                09/112,831                IJM42
    PP3986                09/112,830                IJM43
    PP3984                09/112,836                IJM44
    PP3982                09/112,835                IJM45
    PP0895                09/113,102                IR01
    PP0870                09/113,106                IR02
    PP0869                09/113,105                IR04
    PP0887                09/113,104                IR05
    PP0885                09/112,810                IR06
    PP0884                09/112,766                IR10
    PP0886                09/113,085                IR12
    PP0871                09/113,086                IR13
    PP0876                09/113,094                IR14
    PP0877                09/112,760                IR16
    PP0878                09/112,773                IR17
    PP0879                09/112,774                IR18
    PP0883                09/112,775                IR19
    PP0880                09/112,745                IR20
    PP0881                09/113,092                IR21
    PO8006                6,087,638                 MEMS02
    PO8007                09/113,093                MEMS03
    PO8008                09/113,062                MEMS04
    PO8010                6,041,600                 MEMS05
    PO8011                09/113,082                MEMS06
    PO7947                6,067,797                 MEMS07
    PO7944                09/113,080                MEMS09
    PO7946                6,044,646                 MEMS10
    PO9393                09/113,065                MEMS11
    PP0875                09/113,078                MEMS12
    PP0894                09/113,075                MEMS13

Claims



What is claimed is:

1. An ink ejection arrangement which comprises

a wafer substrate which defines an ink supply channel and which incorporates drive circuitry;

side walls which are arranged on the wafer substrate and which define an ink chamber, the ink supply channel being in fluid communication with the ink chamber;

a paddle which is located in the ink chamber and which is displaceable between the side walls to eject ink from the ink chamber; and

an actuator which is connected to the paddle and to the drive circuitry and which is configured so that, upon activation of the actuator by the drive circuitry, the paddle is displaced towards one of the side walls, the ink chamber and the paddle being configured so that, when the paddle is so displaced towards one of the side walls, ink is ejected from the ink chamber.

2. An ink jet arrangement as claimed in claim 1, wherein the side walls defining the ink chamber are defined by an etching and deposition process carried out on the wafer substrate.

3. An ink jet arrangement as claimed in claim 1, wherein the paddle is shaped to have edges which correspond generally with a transverse profile of the ink chamber.

4. An ink jet arrangement as claimed in claim 1, wherein the actuator has a resiliently flexible coiled structure, one end of the coiled structure being connected to the paddle and an opposed end of the coiled structure being connected to the drive circuitry, the actuator being configured so that, upon activation by the drive circuitry, the coiled structure partially uncoils to an extent necessary to displace the paddle towards said one of the walls, resulting in said ejection of ink.

5. An ink jet arrangement as claimed in claim 4, wherein the coiled structure includes an electrical conductor which is connected to the drive circuitry and which is configured to expand upon conductive heating, thereby partially uncoiling to said necessary extent.

6. An ink jet arrangement as claimed in claim 5, wherein the coiled structure includes a coiled member on which the electrical conductor is positioned, the electrical conductor being positioned to act on the coiled member partially to uncoil the coiled member, so that the paddle is displaced to said necessary extent.

7. An ink jet arrangement as claimed in claim 6, wherein the electrical conductor comprises substantially titanium diboride and the coiled member comprises substantially silicon nitride.

8. An ink jet arrangement as claimed in claim 6, wherein the coiled member and the electrical conductor are defined by an etching and deposition process carried out on the wafer substrate.

9. An ink jet printhead which comprises a plurality of ink jet arrangements as claimed in claim 1.
Description



STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

Not applicable.

FIELD OF THE INVENTION

The present invention relates to the field of ink jet printing and in particular, discloses an ink jet printing mechanism.

BACKGROUND OF THE INVENTION

Many different types of printing have been invented, a large number of which are presently in use. The known forms of print have a variety of methods for marking the print media with a relevant marking media. Commonly used forms of printing include offset printing, laser printing and copying devices, dot matrix type impact printers, thermal paper printers, film recorders, thermal wax printers, dye sublimation printers and ink jet printers both of the drop-on-demand and continuous flow type. Each type of printer has its own advantages and problems when considering cost, speed, quality, reliability, simplicity of construction and operation etc.

In recent years, the field of ink jet printing, wherein each individual pixel of ink is derived from one or more ink nozzles has become increasingly popular primarily due to its inexpensive and versatile nature.

Many different techniques of ink jet printing have been invented. For a survey of the field, reference is made to an article by J Moore, "Non-Impact Printing: Introduction and Historical Perspective", Output Hard Copy Devices, Editors R Dubeck and S Sherr, pages 207-220 (1988).

Ink Jet printers themselves come in many different forms. The utilization of a continuous stream of ink in ink jet printing appears to date back to at least 1929 wherein U.S. Pat. No. 1,941,001 by Hansell discloses a simple form of continuous stream electro-static ink jet printing.

U.S. Pat. No. 3,596,275 by Sweet also discloses a continuous ink jet printing process including a step wherein the ink jet stream is modulated by a high frequency electro-static field so as to cause drop separation. This technique is still utilized by several manufacturers including Elmjet and Scitex (see also U.S. Pat. No. 3,373,437 by Sweet et al).

Piezoelectric ink jet printers are also one form of commonly utilized ink jet printing device. Piezoelectric systems are disclosed by Kyser et. al. in U.S. Pat. No. 3,946,398 (1970) which utilizes a diaphragm mode of operation, by Zolten in U.S. Pat. No. 3,683,212 (1970) which discloses a squeeze mode of operation of a piezoelectric crystal, Stemme in U.S. Pat. No. 3,747,120 (1972) discloses a bend mode of piezoelectric operation, Howkins in U.S. Pat. No. 4,459,601 discloses a piezoelectric push mode actuation of the ink jet stream and Fischbeck in U.S. Pat. No. 4,584,590 which discloses a shear mode type of piezoelectric transducer element.

Recently, thermal ink jet printing has become an extremely popular form of ink jet printing. The ink jet printing techniques include those disclosed by Endo et al in GB 2007162 (1979) and Vaught et al in U.S. Pat. No. 4,490,728. Both the aforementioned references disclose ink jet printing techniques which rely upon the activation of an electrothermal actuator which results in the creation of a bubble in a constricted space, such as a nozzle, resulting in the ejection of ink from an aperture connected to the confined space onto a relevant print media. Printing devices utilizing the electro-thermal actuator are manufactured by manufacturers such as Canon and Hewlett Packard.

As can be seen from the foregoing, many different types of printing technologies are available. Ideally, a printing technology should have a number of desirable attributes. These include inexpensive construction and operation, high speed operation, safe and continuous long term operation etc. Each technology may have its own advantages and disadvantages in the areas of cost, speed, quality, reliability, power usage, simplicity of construction, operation, durability and consumables.

SUMMARY OF THE INVENTION

It is an object of the present invention to provide an ink ejection arrangement which does not require a nozzle.

In accordance with a first aspect of the present invention, there is provided an ink ejection arrangement which includes a wafer substrate. Side walls are arranged on the wafer substrate. The side walls define an ink chamber. A paddle is positioned in the ink chamber and is displaceable towards one of the side walls. An actuator is attached to the paddle such that, upon activation of the actuator, the paddle is displaced towards the one wall, resulting in an increase in pressure on the ink between the one wall and the paddle and an ejection of ink from the chamber.

Ideally, the present invention can be utilized in an ink jet printing system.

The actuator may be interconnected to the paddle via an arm extending over one edge of the ink chamber. The actuator may comprise a coiled thermal actuator having a first conductive arm and a second substantially non-conductive arm, the conductive arm expanding upon electrical resistive heating to thereby cause the activation of the thermal actuator. The first conductive arm can comprise substantially titanium diboride and the second non-conductive arm can comprise substantially silicon nitride. The actuator can operate in ambient atmosphere.

Preferably, the ink chamber is formed within a silicon wafer and the arrangement further comprises an ink supply channel etched through the wafer and in fluid communication with the ink chamber for the supply of ink to the ink chamber.

BRIEF DESCRIPTION OF THE DRAWINGS

Notwithstanding any other forms which may fall within the scope of the present invention, preferred forms of the invention will now be described, by way of example only, with reference to the accompanying drawings in which:

FIG. 1 is a descriptive view of an ink ejection arrangement when in a quiescent state;

FIG. 2 is a descriptive view of an ejection arrangement when in an activated state;

FIG. 3 is an exploded perspective view of the different components of an ink ejection arrangement;

FIG. 4 illustrates a cross section through the line IV--IV of FIG. 1;

FIGS. 5 to 24 illustrate the various manufacturing steps in the construction of the preferred embodiment;

FIG. 25 illustrates a portion of an array of ink ejection arrangements as constructed in accordance with the preferred embodiment.

FIG. 26 provides a legend of the materials indicated in FIGS. 27 to 38; and

FIGS. 27 to 38 illustrate sectional views of manufacturing steps of one form of construction of the ink ejection arrangement.

DESCRIPTION OF PREFERRED AND OTHER EMBODIMENTS

In the preferred embodiment, there is provided an inkjet printing arrangement arranged on a silicon wafer. The ink is supplied to a first surface of the silicon wafer by means of channels etched through the back of the wafer to an ink ejection chamber located along the surface of the wafer. The ink ejection chamber is filled with ink and includes a paddle attached to an external actuator which is activated so as to compress a portion of the ink within the chamber against a sidewall resulting in the corresponding ejection of ink from the chamber.

FIG. 1 illustrates an ink ejection arrangement 1 of the invention in the quiescent position with FIG. 2 illustrating the view arrangement 1 after activation of a thermal actuator 7 and FIG. 3 illustrates an exploded perspective view of the ink ejection arrangement 1.

Ink is supplied to an ink ejection chamber 2 from an ink supply channel 3 which is etched through the wafer 4. A paddle 6 is located in the ink ejection chamber 2 and attached to a thermal actuator 7. When the actuator 7 is activated, the paddle 6 is moved as illustrated in FIG. 2 thereby displacing ink within the ink ejection chamber 2 resulting in the ejection of the ink from the chamber 2. The actuator 7 comprises a coiled arm which is in turn made up of three sub-arm components.

Turning to FIG. 4, there is illustrated a section through the line IV--IV of FIG. 1 illustrating the structure of the arm which includes an upper conductive arm 10 and a lower conductive arm 11. The two arms can be made from conductive titanium diboride which has a high Young's modulus in addition to a suitably high coefficient of thermal expansion. The two arms 10, 11 are encased in a silicon nitride portion 12 of the arm. The two arms 10, 11 are conductively interconnected at one end 13 (FIG. 1) of the actuator 7 and, at the other end, they are electrically interconnected at 14, 15, respectively, to control circuitry to a lower CMOS layer 17 which includes the drive circuitry for activating the actuator 7.

The conductive heating of the arms 10, 11 results in a general expansion of these two arms 10, 11. The expansion works against the nitride portion 12 of the arm resulting in a partial "uncoiling" of the actuator 7 which in turn results in a corresponding movement of the paddle 6 resulting in the ejection of ink from the nozzle chamber 2. The nozzle chamber 2 can include a rim 18 which, for convenience, can also be constructed from titanium diboride. The rim 18 has an arcuate profile shown at 19 which is shaped to guide the paddle 6 on an arcuate path. Walls defining the ink ejection chamber 2 are similarly profiled. Upon the ejection of a drop, the paddle 6 returns to its quiescent position.

In FIGS. 5-24, there is shown manufacturing processing steps involved in the fabrication of the preferred embodiment.

1. Starting initially with FIG. 5, a starting point for manufacture is a silicon wafer having a CMOS layer 17 which can comprise the normal CMOS processes including multi-level metal layers etc. and which provide the electrical circuitry for the operation of the preferred embodiment which can be formed as part of a multiple series or array of nozzles at a single time on a single wafer.

2. The next step in the construction of the preferred embodiment is to form an etched pit 21 as illustrated in FIG. 6. The etched pit 21 can be formed utilizing a highly anisotropic trench etcher such as that available from Silicon Technology Systems of the United Kingdom. The pit 21 is preferably etched to have steep sidewalls. A dry etch system capable of high aspect ratio deep silicon trench etching is that known as the Advance Silicon Etch System available from Surface Technology Systems of the United Kingdom.

3. Next, as illustrated in FIG. 7, a 1 .mu.m layer of aluminium 22 is deposited over the surface of the wafer.

4. Next, as illustrated in FIG. 8 a five micron glass layer 23 is deposited on top of the aluminium layer 22.

5. Next, the glass layer 23 is chemically and/or mechanically planarized to provide a 1 .mu.m thick layer of glass over the aluminium layer 22 as illustrated in FIG. 9.

6. A triple masked etch process is then utilized to etch the deposited layer as illustrated in FIG. 10. The etch includes a 1.5 .mu.m etch of the glass layer 23. The etch defines the via 25, a trench for rim portions 26, 27 and a paddle portion 28.

7. Next, as illustrated in FIG. 11, a 0.9 .mu.m layer 60 of titanium diboride is deposited.

8. The titanium diboride layer 60 is subsequently masked and etched to leave those portions as illustrated in FIG. 12.

9. A 1 .mu.m layer of silicon dioxide (SiO.sub.2) is then deposited and chemically and/or mechanically planarized as illustrated in FIG. 13 to a level of the titanium diboride.

10. As illustrated in FIG. 14 the silicon dioxide layer 61 is then etched to form a spiral pattern where a nitride layer will later be deposited. The spiral pattern includes etched portions 30-32.

11. Next, as illustrated in FIG. 15, a 0.2 .mu.m layer 62 of the silicon nitride is deposited.

12. The silicon nitride layer 62 is then etched in areas 34-36 to provide for electrical interconnection in areas 34, 35, in addition to a mechanical interconnection, as will become more apparent hereinafter, in the area 36 as shown in FIG. 16.

13. As shown in FIG. 17, a 0.9 .mu.m layer 63 of titanium diboride is then deposited.

14. The titanium diboride is then etched to leave the via structure 14 the spiral structure 10 and the paddle arm 6, as shown in FIG. 18.

15. A 1 .mu.m layer 64 of silicon nitride is then deposited as illustrated in FIG. 19.

16. The nitride layer 64 is then chemically and mechanically planarized to the level of the titanium diboride layer 63 as shown in FIG. 20.

17. The silicon nitride layer 64 is then etched so as to form the silicon nitride portions of a spiral arm 42, 43 with a thin portion of silicon nitride also remaining under the paddle arm as shown in FIG. 21.

18. As shown in FIG. 22 an ink supply channel 45 can be etched from a back of the wafer 4. Again, an STS deep silicon trench etcher can be utilized.

19. The next step is a wet etch of all exposed glass (SiO.sub.2) surfaces of the wafer 4 which results in a substantial release of the paddle structure as illustrated in FIG. 23.

20. Finally, as illustrated in FIG. 24, the exposed aluminium surfaces are then wet etched away resulting in a release of the paddle structure which springs back to its quiescent or return position ready for operation.

The wafer can then be separated into printhead units and interconnected to an ink supply along the back surface of the wafer for the supply of ink to the nozzle arrangement.

In FIG. 25, there is illustrated a portion 49 of an array of nozzles which can include a three colour output including a first colour series 50, second colour series 51 and third colour series 52. Each colour series is further divided into two rows 54 of ink ejection units with each unit providing for the ejection ink drops corresponding to a single pixel of a line. Hence, a page width array of nozzles can be formed including appropriate bond pads 55 for providing electrical interconnection. The page width printhead can be formed with a silicon wafer with multiple printheads being formed simultaneously using the aforementioned steps. Subsequently, the printheads can be separated and joined to an ink supply mechanism for supplying ink via the back of the wafer to each ink ejection arrangement, the supply being suitably arranged for providing separate colours.

The presently disclosed ink jet printing technology is potentially suited to a wide range of printing system including: colour and monochrome office printers, short run digital printers, high speed digital printers, offset press supplemental printers, low cost scanning printers high speed pagewidth printers, notebook computers with inbuilt pagewidth printers, portable colour and monochrome printers, colour and monochrome copiers, colour and monochrome facsimile machines, combined printer, facsimile and copying machines, label printers, large format plotters, photograph copiers, printers for digital photographic "minilabs", video printers, PHOTO CD (PHOTO CD is a registered trade mark of the Eastman Kodak Company) printers, portable printers for PDAs, wallpaper printers, indoor sign printers, billboard printers, fabric printers, camera printers and fault tolerant commercial printer arrays.

One form of detailed manufacturing process which can be used to fabricate monolithic ink jet printheads operating in accordance with the principles taught by the present embodiment can proceed utilizing the following steps:

1. Using a double-sided polished wafer 4, complete drive transistors, data distribution, and timing circuits using a 0.5 micron, one poly, 2 metal CMOS process layer 17. Relevant features of the wafer 4 at this step are shown in FIG. 27. For clarity, these diagrams may not be to scale, and may not represent a cross section though any single plane of the nozzle. FIG. 26 is a key to representations of various materials in these manufacturing diagrams, and those of other cross referenced ink jet configurations.

2. Etch oxide down to silicon or aluminum using Mask 1. This mask defines the ink inlet, the heater contact vias, and the edges of the printhead chips. This step is shown in FIG. 28.

3. Etch silicon to a depth of 10 microns using the etched oxide as a mask. This step is shown in FIG. 29.

4. Deposit 1 micron of sacrificial material 22 (e.g. aluminum). This step is shown in FIG. 30.

5. Deposit 10 microns of a second sacrificial material 70 (e.g. polyimide). This fills the etched silicon hole.

6. Planarize using CMP to the level of the first sacrificial material 22. This step is shown in FIG. 31.

7. Etch the first sacrificial layer 22 using Mask 2, defining the nozzle chamber wall and the actuator anchor point 25. This step is shown in FIG. 32.

8. Deposit 1 micron of glass 71.

9. Etch the glass 71 and second sacrificial layer 70 using Mask 3. This mask defines the lower layer of the actuator loop, the nozzle chamber wall, and the lower section of the paddle.

10. Deposit 1 micron of heater material 72, for example titanium nitride (TiN) or titanium diboride (TiB2). Planarize using CMP. Steps 8 to 10 form a `damascene` process. This step is shown in FIG. 33.

11. Deposit 0.1 micron of silicon nitride 73.

12. Deposit 1 micron of glass 74.

13. Etch the glass 74 using Mask 4, which defines the upper layer of the actuator loop, the arm to the paddle, and the upper section of the paddle.

14. Etch the silicon nitride 73 using Mask 5, which defines the vias connecting the upper layer of the actuator loop to the lower layer of the actuator loop, as well as the arm to the paddle, and the upper section of the paddle.

15. Deposit 1 micron of the same heater material 75 as in step 10. Planarize using CMP. Steps 11 to 15 form a `dual damascene` process. This step is shown in FIG. 34.

16. Etch the glass and nitride down to the sacrificial layer 22 using Mask 6, which defines the actuator. This step is shown in FIG. 35.

17. Wafer probe. All electrical connections are complete at this point, bond pads are accessible, and the chips are not yet separated.

18. Back-etch completely through the silicon wafer (with, for example, an ASE Advanced Silicon Etcher from Surface Technology Systems) using Mask 7. This mask defines the ink inlets 3 which are etched through the wafer 4. The wafer 4 is also diced by this etch. This step is shown in FIG. 36.

19. Etch both sacrificial materials 22, 70. The nozzle chambers are cleared, the actuators freed, and the chips are separated by this etch. This step is shown in FIG. 37.

20. Mount the chips in their packaging, which may be a molded plastic former incorporating ink channels which supply the appropriate color ink to the ink inlets 3 at the back of the wafer.

21. Connect the chips to their interconnect systems. For a low profile connection with minimum disruption of airflow, TAB may be used. Wire bonding may also be used if the printer is to be operated with sufficient clearance to the paper.

22. Fill the printhead with water. Hydrophobize the exposed portions of the printhead by exposing the printhead to a vapor of a perfluorinated alkyl trichlorosilane. Drain the water and dry the printhead.

23. Fill the completed printhead with ink 76 and test it. A filled nozzle is shown in FIG. 38. It would be appreciated by a person skilled in the art that numerous variations and/or modifications may be made to the present invention as shown in the specific embodiments without departing from the spirit or scope of the invention as broadly described. The present embodiments are, therefore, to be considered in all respects to be illustrative and not restrictive.

Ink Jet Technologies

The embodiments of the invention use an ink jet printer type device. Of course many different devices could be used. However presently popular ink jet printing technologies are unlikely to be suitable.

The most significant problem with thermal ink jet is power consumption. This is approximately 100 times that required for high speed, and stems from the energy-inefficient means of drop ejection. This involves the rapid boiling of water to produce a vapor bubble which expels the ink. Water has a very high heat capacity, and must be superheated in thermal ink jet applications. This leads to an efficiency of around 0.02%, from electricity input to drop momentum (and increased surface area) out.

The most significant problem with piezoelectric ink jet is size and cost. Piezoelectric crystals have a very small deflection at reasonable drive voltages, and therefore require a large area for each nozzle. Also, each piezoelectric actuator must be connected to its drive circuit on a separate substrate. This is not a significant problem at the current limit of around 300 nozzles per print head, but is a major impediment to the fabrication of pagewidth printheads with 19,200 nozzles.

Ideally, the ink jet technologies used meet the stringent requirements of in-camera digital color printing and other high quality, high speed, low cost printing applications. To meet the requirements of digital photography, new ink jet technologies have been created. The target features include:

low power (less than 10 Watts)

high resolution capability (1,600 dpi or more)

photographic quality output

low manufacturing cost

small size (pagewidth times minimum cross section)

high speed (>2 seconds per page).

All of these features can be met or exceeded by the ink jet systems described below with differing levels of difficulty. Forty-five different ink jet technologies have been developed by the Assignee to give a wide range of choices for high volume manufacture. These technologies form part of separate applications assigned to the present Assignee as set out in the table under the heading Cross References to Related Applications.

The ink jet designs shown here are suitable for a wide range of digital printing systems, from battery powered one-time use digital cameras, through to desktop and network printers, and through to commercial printing systems.

For ease of manufacture using standard process equipment, the printhead is designed to be a monolithic 0.5 micron CMOS chip with MEMS post processing. For color photographic applications, the printhead is 100 mm long, with a width which depends upon the ink jet type. The smallest printhead designed is IJ38, which is 0.35 mm wide, giving a chip area of 35 square mm. The printheads each contain 19,200 nozzles plus data and control circuitry.

Ink is supplied to the back of the printhead by injection molded plastic ink channels. The molding requires 50 micron features, which can be created using a lithographically micromachined insert in a standard injection molding tool. Ink flows through holes etched through the wafer to the nozzle chambers fabricated on the front surface of the wafer. The printhead is connected to the camera circuitry by tape automated bonding.

Tables of Drop-on-Demand Ink Jets

Eleven important characteristics of the fundamental operation of individual ink jet nozzles have been identified. These characteristics are largely orthogonal, and so can be elucidated as an eleven dimensional matrix. Most of the eleven axes of this matrix include entries developed by the present assignee.

The following tables form the axes of an eleven dimensional table of ink jet types.

Actuator mechanism (18 types)

Basic operation mode (7 types)

Auxiliary mechanism (8 types)

Actuator amplification or modification method (17 types)

Actuator motion (19 types)

Nozzle refill method (4 types)

Method of restricting back-flow through inlet (10 types)

Nozzle clearing method (9 types)

Nozzle plate construction (9 types)

Drop ejection direction (5 types)

Ink type (7 types)

The complete eleven dimensional table represented by these axes contains 36.9 billion possible configurations of ink jet nozzle. While not all of the possible combinations result in a viable ink jet technology, many million configurations are viable. It is clearly impractical to elucidate all of the possible configurations. Instead, certain ink jet types have been investigated in detail. These are designated IJ01 to IJ45 above which matches the docket numbers in the tables under the heading Cross References to Related Applications.

Other ink jet configurations can readily be derived from these forty-five examples by substituting alternative configurations along one or more of the 11 axes. Most of the IJ01 to IJ45 examples can be made into ink jet printheads with characteristics superior to any currently available ink jet technology.

Where there are prior art examples known to the inventor, one or more of these examples are listed in the examples column of the tables below. The IJ01 to IJ45 series are also listed in the examples column. In some cases, print technology may be listed more than once in a table, where it shares characteristics with more than one entry.

Suitable applications for the ink jet technologies include: Home printers, Office network printers, Short run digital printers, Commercial print systems, Fabric printers, Pocket printers, Internet WWW printers, Video printers, Medical imaging, Wide format printers, Notebook PC printers, Fax machines, Industrial printing systems, Photocopiers, Photographic minilabs etc.

The information associated with the aforementioned 11 dimensional matrix are set out in the following tables.

    ACTUATOR MECHANISM (APPLIED ONLY TO SELECTED INK DROPS)
                Description          Advantages           Disadvantages
     Examples
    Thermal     An electrothermal    .diamond-solid. Large force
     .diamond-solid. High power   .diamond-solid. Canon Bubblejet
    bubble      heater heats the ink to generated            .diamond-solid.
     Ink carrier  1979 Endo et al GB
                above boiling point, .diamond-solid. Simple       limited to
     water     patent 2,007,162
                transferring significant construction         .diamond-solid.
     Low efficiency .diamond-solid. Xerox heater-in-
                heat to the aqueous  .diamond-solid. No moving parts
     .diamond-solid. High         pit 1990 Hawkins et al
                ink. A bubble        .diamond-solid. Fast operation
     temperatures         U.S. Pat. No. 4,899,181
                nucleates and quickly .diamond-solid. Small chip area required
                .diamond-solid. Hewlett-Packard
                forms, expelling the required for actuator .diamond-solid. High
     mechanical TIJ 1982 Vaught et al
                ink.                                      stress
     U.S. Pat. No. 4,490,728
                The efficiency of the                      .diamond-solid.
     Unusual
                process is low, with                      materials required
                typically less than                       .diamond-solid. Large
     drive
                0.05% of the electrical                      transistors
                energy being                              .diamond-solid.
     Cavitation causes
                transformed into                          actuator failure
                kinetic energy of the                      .diamond-solid.
     Kogation reduces
                drop.                                     bubble formation
                                                          .diamond-solid. Large
     print heads
                                                          are difficult to
                                                          fabricate
    Piezo-      A piezoelectric crystal .diamond-solid. Low power
     .diamond-solid. Very large area .diamond-solid. Kyser et al
    electric    such as lead         consumption          required for actuator
     U.S. Pat. No. 3,946,398
                lanthanum zirconate  .diamond-solid. Many ink types
     .diamond-solid. Difficult to .diamond-solid. Zoltan
                (PZT) is electrically can be used          integrate with
     U.S. Pat. No. 3,683,212
                activated, and either .diamond-solid. Fast operation
     electronics          .diamond-solid. 1973 Stemme
                expands, shears, or  .diamond-solid. High efficiency
     .diamond-solid. High voltage U.S. Pat. No. 3,747,120
                bends to apply                            drive transistors
     .diamond-solid. Epson Stylus
                pressure to the ink,                      required
     .diamond-solid. Tektronix
                ejecting drops.                           .diamond-solid. Full
     pagewidth .diamond-solid. IJ04
                                                          print heads
                                                          impractical due to
                                                          actuator size
                                                          .diamond-solid.
     Requires
                                                          electrical poling in
                                                          high field strengths
                                                          during manufacture
    Electro-    An electric field is .diamond-solid. Low power
     .diamond-solid. Low maximum  .diamond-solid. Seiko Epson,
    strictive   used to activate     consumption          strain (approx.
     Usui et all JP
                electrostriction in  .diamond-solid. Many ink types 0.01%)
              253401/96
                relaxor materials such can be used          .diamond-solid.
     Large area   .diamond-solid. IJ04
                as lead lanthanum    .diamond-solid. Low thermal  required for
     actuator
                zirconate titanate   expansion            due to low strain
                (PLZT) or lead       .diamond-solid. Electric field
     .diamond-solid. Response speed
                magnesium niobate    strength required    is marginal
     (.about.10 .mu.s)
                (PMN).               (approx. 3.5 V/.mu.m) .diamond-solid. High
     voltage
                                     can be generated     drive transistors
                                     without difficulty   required
                                     .diamond-solid. Does not require
     .diamond-solid. Full pagewidth
                                     electrical poling    print heads
                                                          impractical due to
                                                          actuator size
    Ferro-      An electric field is .diamond-solid. Low power
     .diamond-solid. Difficult to .diamond-solid. IJ04
    electric    used to induce a phase consumption          integrate with
                transition between the .diamond-solid. Many ink types
     electronics
                antiferroelectric (AFE) can be used          .diamond-solid.
     Unusual
                and ferroelectric (FE) .diamond-solid. Fast operation materials
     such as
                phase. Perovskite    (<1 .mu.s)       PLZSnT are
                materials such as tin .diamond-solid. Relatively high required
                modified lead        longitudinal strain  .diamond-solid.
     Actuators require
                lanthanum zirconate  .diamond-solid. High efficiency a large
     area
                titanate (PLZSnT)    .diamond-solid. Electric field
                exhibit large strains of strength of around 3
                up to 1% associated  V/.mu.m can be readily
                with the AFE to FE   provided
                phase transition.
    Electro-    Conductive plates are .diamond-solid. Low power
     .diamond-solid. Difficult to .diamond-solid. IJ02, IJ04
    static plates separated by a       consumption          operate
     electrostatic
                compressible or fluid .diamond-solid. Many ink types devices in
     an
                dielectric (usually air). can be used          aqueous
                Upon application of a .diamond-solid. Fast operation
     environment
                voltage, the plates                       .diamond-solid. The
     electrostatic
                attract each other and                      actuator will
                displace ink, causing                      normally need to be
                drop ejection. The                        separated from the
                conductive plates may                      ink
                be in a comb or                           .diamond-solid. Very
     large area
                honeycomb structure,                      required to achieve
                or stacked to increase                      high forces
                the surface area and                      .diamond-solid. High
     voltage
                therefore the force.                      drive transistors
                                                          may be required
                                                          .diamond-solid. Full
     pagewidth
                                                          print heads are not
                                                          competitive due to
                                                          actuator size
    Electro-    A strong electric field .diamond-solid. Low current
     .diamond-solid. High voltage .diamond-solid. 1989 Saito et al,
    static pull is applied to the ink, consumption          required
      U.S. Pat. No. 4,799,068
    on ink      whereupon            .diamond-solid. Low temperature
     .diamond-solid. May be damaged .diamond-solid. 1989 Miura et al,
                electrostatic attraction                      by sparks due to
     air U.S. Pat. No. 4,810,954
                accelerates the ink                       breakdown
     .diamond-solid. Tone-jet
                towards the print                         .diamond-solid.
     Required field
                medium.                                   strength increases as
                                                          the drop size
                                                          decreases
                                                          .diamond-solid. High
     voltage
                                                          drive transistors
                                                          required
                                                          .diamond-solid.
     Electrostatic field
                                                          attracts dust
    Permanent   An electromagnet     .diamond-solid. Low power
     .diamond-solid. Complex      .diamond-solid. IJ07, IJ10
    magnet      directly attracts a  consumption          fabrication
    electro-    permanent magnet,    .diamond-solid. Many ink types
     .diamond-solid. Permanent


magnetic displacing ink and can be used magnetic material causing drop ejection. .diamond-solid. Fast operation such as Neodymium Rare earth magnets .diamond-solid. High efficiency Iron Boron (NdFeB) with a field strength .diamond-solid. Easy extension required. around 1 Tesla can be from single nozzles .diamond-solid. High local used. Examples are: to pagewidth print currents required Samarium Cobalt heads .diamond-solid. Copper (SaCo) and magnetic metalization should materials in the be used for long neodymium iron boron electromigration family (NdFeB, lifetime and low NdDyFeBNb, resistivity NdDyFeB, etc) .diamond-solid. Pigmented inks are usually infeasible .diamond-solid. Operating temperature limited to the Curie temperature (around 540K) Soft A solenoid induced a .diamond-solid. Low power .diamond-solid. Complex .diamond-solid. IJ01, IJ05, IJ08, magnetic magnetic field in a soft consumption fabrication IJ10, IJ12, IJ14, core electro- magnetic core or yoke .diamond-solid. Many ink types .diamond-solid. Materials not IJ15, IJ17 magnetic fabricated from a can be used usually present in a ferrous material such .diamond-solid. Fast operation CMOS fab such as as electroplated iron .diamond-solid. High efficiency NiFe, CoNiFe, or alloys such as CoNiFe .diamond-solid. Easy extension CoFe are required [1], CoFe, or NiFe from single nozzles .diamond-solid. High local alloys. Typically, the to pagewidth print currents required soft magnetic material heads .diamond-solid. Copper is in two parts, which metalization should are normally held be used for long apart by a spring. electromigration When the solenoid is lifetime and low actuated, the two parts resistivity attract, displacing the .diamond-solid. Electroplating is ink. required .diamond-solid. High saturation flux density is required (2.0-2.1 T is achievable with CoNiFe [1]) Lorenz The Lorenz force .diamond-solid. Low power .diamond-solid. Force acts as a .diamond-solid. IJ06, IJ11, IJ13, force acting on a current consumption twisting motion IJ16 carrying wire in a .diamond-solid. Many ink types .diamond-solid. Typically, only a magnetic field is can be used quarter of the utilized. .diamond-solid. Fast operation solenoid length This allows the .diamond-solid. High efficiency provides force in a magnetic field to be .diamond-solid. Easy extension useful direction supplied externally to from single nozzles .diamond-solid. High local the print head, for to pagewidth print currents required example with rare heads .diamond-solid. Copper earth permanent metalization should magnets. be used for long Only the current electromigration carrying wire need be lifetime and low fabricated on the print- resistivity head, simplifying .diamond-solid. Pigmented inks materials are usually requirements. infeasible Magneto- The actuator uses the .diamond-solid. Many ink types .diamond-solid. Force acts as a .diamond-solid. Fischenbeck, striction giant magnetostrictive can be used twisting motion U.S. Pat. No. 4,032,929 effect of materials .diamond-solid. Fast operation .diamond-solid. Unusual .diamond-solid. IJ25 such as Terfenol-D (an .diamond-solid. Easy extension materials such as alloy of terbium, from single nozzles Terfenol-D are dysprosium and iron to pagewidth print required developed at the Naval heads .diamond-solid. High local Ordnance Laboratory, .diamond-solid. High force is currents required hence Ter-Fe-NOL). available .diamond-solid. Copper For best efficiency, the metalization should actuator should be pre- be used for long stressed to approx. 8 electromigration MPa. lifetime and low resistivity .diamond-solid. Pre-stressing may be required Surface Ink under positive .diamond-solid. Low power .diamond-solid. Requires .diamond-solid. Silverbrook, EP tension pressure is held in a consumption supplementary force 0771 658 A2 and reduction nozzle by surface .diamond-solid. Simple to effect drop related patent tension. The surface construction separation applications tension of the ink is .diamond-solid. No unusual .diamond-solid. Requires special reduced below the materials required in ink surfactants bubble threshold, fabrication .diamond-solid. Speed may be causing the ink to .diamond-solid. High efficiency limited by surfactant egress from the .diamond-solid. Easy extension properties nozzle. from single nozzles to pagewidth print heads Viscosity The ink viscosity is .diamond-solid. Simple .diamond-solid. Requires .diamond-solid. Silverbrook, EP reduction locally reduced to construction supplementary force 0771 658 A2 and select which drops are .diamond-solid. No unusual to effect drop related patent to be ejected. A materials required in separation applications viscosity reduction can fabrication .diamond-solid. Requires special be achieved .diamond-solid. Easy extension ink viscosity electrothermally with from single nozzles properties most inks, but special to pagewidth print .diamond-solid. High speed is inks can be engineered heads difficult to achieve for a 100:1 viscosity .diamond-solid. Requires reduction. oscillating ink pressure .diamond-solid. A high temperature difference (typically 80 degrees) is required Acoustic An acoustic wave is .diamond-solid. Can operate .diamond-solid. Complex drive .diamond-solid. 1993 Hadimioglu generated and without a nozzle circuitry et al, EUP 550,192 focussed upon the plate .diamond-solid. Complex .diamond-solid. 1993 Elrod et al, drop ejection region. fabrication EUP 572,220 .diamond-solid. Low efficiency .diamond-solid. Poor control of drop position .diamond-solid. Poor control of drop volume Thermo- An actuator which .diamond-solid. Low power .diamond-solid. Efficient aqueous .diamond-solid. IJ03, IJ09, IJ17, elastic bend relies upon differential consumption operation requires a IJ18, IJ19, IJ20, actuator thermal expansion .diamond-solid. Many ink types thermal insulator on IJ21, IJ22, IJ23, upon Joule heating is can be used the hot side IJ24, IJ27, IJ28, used. .diamond-solid.

Simple planar .diamond-solid. Corrosion IJ29, IJ30, IJ31, fabrication prevention can be IJ32, IJ33, IJ34, .diamond-solid. Small chip area difficult IJ35, IJ36, IJ37, required for each .diamond-solid. Pigmented inks IJ38, IJ39, IJ40, actuator may be infeasible, IJ41 .diamond-solid. Fast operation as pigment particles .diamond-solid. High efficiency may jam the bend .diamond-solid. CMOS actuator compatible voltages and currents .diamond-solid. Standard MEMS processes can be used .diamond-solid. Easy extension from single nozzles to pagewidth print heads High CTE A material with a very .diamond-solid. High force can .diamond-solid. Requires special .diamond-solid. IJ09, IJ17, IJ18, thermo- high coefficient of be generated material (e.g. PTFE) IJ20, IJ21, IJ22, elastic thermal expansion .diamond-solid. Three methods of .diamond-solid. Requires a PTFE IJ23, IJ24, IJ27, actuator (CTE) such as PTFE deposition are deposition process, IJ28, IJ29, IJ30, polytetrafluoroethylene under development: which is not yet IJ31, IJ42, IJ43, (PTFE) is used. As chemical vapor standard in ULSI IJ44 high CTE materials deposition (CVD), fabs are usually non- spin coating, and .diamond-solid. PTFE deposition conductive, a heater evaporation cannot be followed fabricated from a .diamond-solid. PTFE is a with high conductive material is candidate for low temperature (above incorporated. A 50 .mu.m dielectric constant 350.degree. C.) processing long PTFE bend insulation in ULSI .diamond-solid. Pigmented inks actuator with .diamond-solid. Very low power may be infeasible, polysilicon heater and consumption as pigment particles 15 mW power input .diamond-solid. Many ink types may jam the bend can provide 180 .mu.N can be used actuator force and 10 .mu.m .diamond-solid. Simple planar deflection. Actuator fabrication motions include: .diamond-solid. Small chip area Bend required for each Push actuator Buckle .diamond-solid. Fast operation Rotate .diamond-solid. High efficiency .diamond-solid. CMOS compatible voltages and currents .diamond-solid. Easy extension from single nozzles to pagewidth print heads Conductive A polymer with a high .diamond-solid. High force can .diamond-solid. Requires special .diamond-solid. IJ24 polymer coefficient of thermal be generated materials thermo- expansion (such as .diamond-solid. Very low power development (High elastic PTFE) is doped with consumption CTE conductive actuator conducting substances .diamond-solid. Many ink types polymer) to increase its can be used .diamond-solid. Requires a PTFE conductivity to about 3 .diamond-solid. Simple planar deposition process, orders of magnitude fabrication which is not yet below that of copper. .diamond-solid. Small chip area standard in ULSI The conducting required for each fabs polymer expands actuator .diamond-solid. PTFE deposition when resistively .diamond-solid. Fast operation cannot be followed heated. .diamond-solid. High efficiency with high Examples of .diamond-solid. CMOS temperature (above conducting dopants compatible voltages 350.degree. C.) processing include: and currents .diamond-solid. Evaporation and Carbon nanotubes .diamond-solid. Easy extension CVD deposition Metal fibers from single nozzles techniques cannot Conductive polymers to pagewidth print be used such as doped heads .diamond-solid. Pigmented inks polythiophene may be infeasible, Carbon granules as pigment particles may jam the bend actuator Shape A shape memory alloy .diamond-solid. High force is .diamond-solid. Fatigue limits .diamond-solid. IJ26 memory such as TiNi (also available (stresses maximum number alloy known as Nitinol - of hundreds of MPa) of cycles Nickel Titanium alloy .diamond-solid. Large strain is .diamond-solid. Low strain (1%) developed at the Naval available (more than is required to extend Ordnance Laboratory) 3%) fatigue resistance is thermally switched .diamond-solid. High corrosion .diamond-solid. Cycle rate between its weak resistance limited by heat martensitic state and .diamond-solid. Simple removal its high stiffness construction .diamond-solid. Requires unusual austenic state. The .diamond-solid. Easy extension materials (TiNi) shape of the actuator from single nozzles .diamond-solid. The latent heat of in its martensitic state to pagewidth print transformation must is deformed relative to heads be provided the austenic shape. .diamond-solid. Low voltage .diamond-solid. High current The shape change operation operation causes ejection of a .diamond-solid. Requires pre- drop. stressing to distort the martensitic state Linear Linear magnetic .diamond-solid. Linear Magnetic .diamond-solid. Requires unusual .diamond-solid. IJ12 Magnetic actuators include the actuators can be semiconductor Actuator Linear Induction constructed with materials such as Actuator (LIA), Linear high thrust, long soft magnetic alloys Permanent Magnet travel, and high (e.g. CoNiFe) Synchronous Actuator efficiency using .diamond-solid. Some varieties (LPMSA), Linear planar also require Reluctance semiconductor permanent magnetic Synchronous Actuator fabrication materials such as (LRSA), Linear techniques Neodymium iron Switched Reluctance .diamond-solid. Long actuator boron (NdFeB) Actuator (LSRA), and travel is available .diamond-solid. Requires the Linear Stepper .diamond-solid. Medium force is complex multi- Actuator (LSA). available phase drive circuitry .diamond-solid. Low voltage .diamond-solid. High current operation operation

BASIC OPERATION MODE Description Advantages Disadvantages Examples Actuator This is the simplest .diamond-solid. Simple operation .diamond-solid. Drop repetition .diamond-solid. Thermal ink jet directly mode of operation: the .diamond-solid. No external rate is usually .diamond-solid. Piezoelectric ink pushes ink actuator directly fields required limited to around 10 jet supplies sufficient .diamond-solid. Satellite drops kHz. However, this .diamond-solid. IJ01, IJ02, IJ03, kinetic energy to expel can be avoided if is not fundamental IJ04, IJ05, IJ06, the drop. The drop drop velocity is less to the method, but is IJ07, IJ09, IJ11, must have a sufficient than 4 m/s related to the refill IJ12, IJ14, IJ16, velocity to overcome .diamond-solid. Can be efficient, method normally IJ20, IJ22, IJ23, the surface tension. depending upon the used IJ24, IJ25, IJ26, actuator used .diamond-solid. All of the drop IJ27, IJ28, IJ29, kinetic energy must IJ30, IJ31, IJ32, be provided by the IJ33, IJ34, IJ35, actuator IJ36, IJ37, IJ38, .diamond-solid. Satellite drops IJ39, IJ40, IJ41, usually form if drop IJ42, IJ43, IJ44 velocity is greater than 4.5 m/s Proximity The drops to be .diamond-solid. Very simple print .diamond-solid. Requires close .diamond-solid. Silverbrook, EP printed are selected by head fabrication can proximity between 0771 658 A2 and some manner (e.g. be used the print head and related patent thermally induced .diamond-solid. The drop the print media or applications surface tension selection means transfer roller reduction of does not need to .diamond-solid. May require two pressurized ink). provide the energy print heads printing Selected drops are required to separate alternate rows of the separated from the ink the drop from the image in the nozzle by nozzle .diamond-solid. Monolithic color contact with the print print heads are medium or a transfer difficult roller. Electro- The drops to be .diamond-solid. Very simple print .diamond-solid. Requires very .diamond-solid. Silverbrook, EP static pull printed are selected by head fabrication can high electrostatic 0771 658 A2 and on ink some manner (e.g. be used field related patent thermally induced .diamond-solid. The drop .diamond-solid. Electrostatic field applications surface tension selection means for small nozzle .diamond-solid. Tone-Jet reduction of does not need to sizes is above air pressurized ink). provide the energy breakdown Selected drops are required to separate .diamond-solid. Electrostatic field separated from the ink the drop from the may attract dust in the nozzle by a nozzle strong electric field. Magnetic The drops to be .diamond-solid. Very simple print .diamond-solid. Requires .diamond-solid. Silverbrook, EP pull on ink printed are selected by head fabrication can magnetic ink 0771 658 A2 and some manner (e.g. be used .diamond-solid. Ink colors other related patent thermally induced .diamond-solid. The drop than black are applications surface tension selection means difficult reduction of does not need to .diamond-solid. Requires very pressurized ink). provide the energy high magnetic fields Selected drops are required to separate separated from the ink the drop from the in the nozzle by a nozzle strong magnetic field acting on the magnetic ink. Shutter The actuator moves a .diamond-solid. High speed (>50 .diamond-solid. Moving parts are .diamond-solid. IJ13, IJ17, IJ21 shutter to block ink kHz) operation can required flow to the nozzle. The be achieved due to .diamond-solid. Requires ink ink pressure is pulsed reduced refill time pressure modulator at a multiple of the .diamond-solid. Drop timing can .diamond-solid. Friction and wear drop ejection be very accurate must be considered frequency. .diamond-solid. The actuator energy .diamond-solid. Stiction is can be very low possible Shuttered The actuator moves a .diamond-solid. Actuators with .diamond-solid. Moving parts are .diamond-solid. IJ08, IJ15, IJ18, grill shutter to block ink small travel can be required IJ19 flow through a grill to used .diamond-solid. Requires ink the nozzle. The shutter .diamond-solid. Actuators with pressure modulator movement need only small force can be .diamond-solid. Friction and wear be equal to the width used must be considered of the grill holes. .diamond-solid. High speed (>50 .diamond-solid. Stiction is kHz) operation can possible be achieved Pulsed A pulsed magnetic .diamond-solid. Extremely low .diamond-solid. Requires an .diamond-solid. IJ10 magnetic field attracts an `ink energy operation is external pulsed pull on ink pusher` at the drop possible magnetic field pusher ejection frequency. An .diamond-solid. No heat .diamond-solid. Requires special actuator controls a dissipation materials for both catch, which prevents problems the actuator and the the ink pusher from ink pusher moving when a drop is .diamond-solid. Complex not to be ejected. construction

AUXILIARY MECHANISM (APPLIED TO ALL NOZZLES) Description Advantages Disadvantages Examples None The actuator directly .diamond-solid. Simplicity of .diamond-solid. Drop ejection .diamond-solid. Most ink jets, fires the ink drop, and construction energy must be including there is no external .diamond-solid. Simplicity of supplied by piezoelectric and field or other operation individual nozzle thermal bubble. mechanism required. .diamond-solid. Small physical actuator .diamond-solid. IJ01, IJ02, IJ03, size IJ04, IJ05, IJ07, IJ09, IJ11, IJ12, IJ14, IJ20, IJ22, IJ23, IJ24, IJ25, IJ26, IJ27, IJ28, IJ29, IJ30, IJ31, IJ32, IJ33, IJ34, IJ35, IJ36, IJ37, IJ38, IJ39, IJ40, IJ41, IJ42, IJ43, IJ44 Oscillating The ink pressure .diamond-solid. Oscillating ink .diamond-solid. Requires external .diamond-solid. Silverbrook, EP ink pressure oscillates, providing pressure can provide ink pressure 0771 658 A2 and (including much of the drop a refill pulse, oscillator related patent acoustic ejection energy. The allowing higher .diamond-solid. Ink pressure applications stimul- actuator selects which operating speed phase and amplitude .diamond-solid. IJ08, IJ13, IJ15, ation) drops are to be fired .diamond-solid. The actuators must be carefully IJ17, IJ18, IJ19, by selectively may operate with controlled IJ21 blocking or enabling much lower energy .diamond-solid. Acoustic nozzles. The ink .diamond-solid. Acoustic lenses reflections in the ink pressure oscillation can be used to focus chamber must be may be achieved by the sound on the designed for vibrating the print nozzles head, or preferably by an actuator in the ink supply. Media The print head is .diamond-solid. Low power .diamond-solid. Precision .diamond-solid. Silverbrook, EP proximity placed in close .diamond-solid. High accuracy assembly required 0771 658 A2 and proximity to the print .diamond-solid. Simple print head .diamond-solid. Paper fibers may related patent medium. Selected construction cause problems applications drops protrude from .diamond-solid. Cannot print on the print head further rough substrates than unselected drops, and contact the print medium. The drop soaks into the medium fast enough to cause drop separation. Transfer Drops are printed to a .diamond-solid. High accuracy .diamond-solid. Bulky .diamond-solid. Silverbrook, EP roller transfer roller instead .diamond-solid. Wide range of .diamond-solid. Expensive 0771 658 A2 and of straight to the print print substrates can .diamond-solid. Complex related patent medium. A transfer be used construction applications roller can also be used .diamond-solid. Ink can be dried .diamond-solid. Tektronix hot for proximity drop on the transfer roller melt piezoelectric separation. ink jet .diamond-solid. Any of the IJ series Electro- An electric field is .diamond-solid. Low power .diamond-solid. Field strength .diamond-solid. Silverbrook, EP static used to accelerate .diamond-solid. Simple print head required for 0771 658 A2 and selected drops towards construction separation of small related patent the print medium. drops is near or applications above air .diamond-solid. Tone-Jet breakdown Direct A magnetic field is .diamond-solid. Low power .diamond-solid. Requires .diamond-solid. Silverbrook, EP magnetic used to accelerate .diamond-solid. Simple print head magnetic ink 0771 658 A2 and field selected drops of construction .diamond-solid. Requires strong related patent magnetic ink towards magnetic field applications the print medium. Cross The print head is .diamond-solid. Does not require .diamond-solid. Requires external .diamond-solid. IJ06, IJ16 magnetic placed in a constant magnetic materials magnet field magnetic fleld. The to be integrated in .diamond-solid. Current densities Lorenz force in a the print head may be high, current carrying wire manufacturing resulting in is used to move the process electromigration actuator. problems Pulsed A pulsed magnetic .diamond-solid. Very low power .diamond-solid. Complex print .diamond-solid. IJ10 magnetic field is used to operation is possible head construction field cyclically attract a .diamond-solid. Small print head .diamond-solid. Magnetic paddle, which pushes size materials required in on the ink. A small print head actuator moves a catch, which selectively prevents the paddle from moving.

ACTUATOR AMPLIFICATION OR MODIFICATION METHOD Description Advantages Disadvantages Examples None No actuator .diamond-solid. Operational .diamond-solid. Many actuator .diamond-solid. Thermal Bubble mechanical simplicity mechanisms have Ink jet amplification is used. insufficient travel, .diamond-solid. IJ01, IJ02, IJ06, The actuator directly or insufficient force, IJ07, IJ16, IJ25, drives the drop to efficiently drive IJ26 ejection process. the drop ejection process Differential An actuator material .diamond-solid. Provides greater .diamond-solid. High stresses are .diamond-solid. Piezoelectric expansion expands more on one travel in a reduced involved .diamond-solid. IJ03, IJ9, IJ17, actuator The expansion may be taken that the IJ21, IJ22, IJ23, thermal, piezoelectric, materials do not IJ24, IJ27, IJ29, magnetostrictive, or delaminate IJ30, IJ31, IJ32, other mechanism. The Residual bend IJ33, IJ34, IJ35, bend actuator converts resulting from high IJ36, IJ37, IJ38, a high force low travel temperature or high IJ39, IJ42, IJ43, actuator mechanism to stress during IJ44 high travel, lower formation force mechanism. Transient A trilayer bend .diamond-solid. Very good .diamond-solid. High stresses are .diamond-solid. IJ40, IJ41 bend actuator where the two temperature stability involved actuator outside layers are .diamond-solid. High speed, as a .diamond-solid. Care must be identical. This cancels new drop can be taken that the bend due to ambient fired before heat materials do not temperature and dissipates delaminate residual stress. The .diamond-solid. Cancels residual actuator only responds stress of formation to transient heating of one side or the other. Reverse The actuator loads a .diamond-solid. Better coupling .diamond-solid. Fabrication .diamond-solid. IJ05, IJ11 spring spring. When the to the ink complexity actuator is turned off, .diamond-solid. High stress in the the spring releases. spring This can reverse the force/distance curve of the actuator to make it compatible with the force/time requirements of the drop ejection. Actuator A series of thin .diamond-solid. Increased travel .diamond-solid. Increased .diamond-solid. Some stack actuators are stacked. .diamond-solid. Reduced drive fabrication piezoelectric inkjets This can be voltage complexity .diamond-solid. IJ04 appropriate where .diamond-solid. Increased actuators require high possibility of short electric field strength, circuits due to such as electrostatic pinholes and piezoelectric actuators. Multiple Multiple smaller .diamond-solid. Increases the .diamond-solid. Actuator forces .diamond-solid. IJ12, IJ13, IJ18, actuators actuators are used force availabte from may not add IJ20, IJ22, IJ28, simultaneously to an actuator linearly, reducing IJ42, IJ43 move the ink. Each .diamond-solid. Multiple efficiency actuator need provide actuators can be only a portion of the positioned to control force required. ink flow accuratety Linear A linear spring is used .diamond-solid. Matches low .diamond-solid. Requires print .diamond-solid. IJ15 Spring to transform a motion travel actuator with head area for the with small travel and higher travel spring high force into a requirements longer travel, lower .diamond-solid. Non-contact force motion. method of motion transformation Coiled A bend actuator is .diamond-solid. Increases travel .diamond-solid. Generally .diamond-solid. IJ17, IJ21, IJ34, actuator coiled to provide .diamond-solid. Reduces chip restricted to planar IJ35 greater travel in a area implementations reduced chip area. .diamond-solid. Planar due to extreme implementations are fabrication difficulty relatively easy to in other orientations. fabricate. Flexure A bend actuator has a .diamond-solid. Simple means of .diamond-solid. Care must be .diamond-solid. IJ10, IJ19, IJ33 bend small region near the increasing travel of taken not to exceed actuator fixture point, which a bend actuator the etastic limit in flexes much more the flexure area ready than the .diamond-solid. Stress remainder of the distribution is very actuator. The actuator uneven flexing is effectively .diamond-solid. Difficult to converted from an accurately model even coiling to an with finite element angular bend, resulting analysis in greater travel of the actuator tip. Catch The actuator controts a .diamond-solid. Very low .diamond-solid. Complex .diamond-solid. IJ10 small catch. The catch actuator energy construction either enables or .diamond-solid. Very small .diamond-solid. Requires external disables movement of actuator size force an ink pusher that is .diamond-solid. Unsuitable for controlled in a bulk pigmented inks manner. Gears Gears can be used to .diamond-solid. Low force, low .diamond-solid. Moving parts are .diamond-solid. IJ13 increase travel at the travel actuators can required expense of duration. be used .diamond-solid. Several actuator Circular gears, rack .diamond-solid. Can be fabricated cycles are required and pinion, ratchets, using standard .diamond-solid. More complex and other gearing surface MEMS drive electronics methods can be used. processes .diamond-solid. Complex construction .diamond-solid. Friction, friction, and wear are possible Buckle plate A buckle plate can be .diamond-solid. Very fast .diamond-solid. Must stay within .diamond-solid. S. Hirata et al, used to change a slow movement elastic limits of the "An Ink-jet Head actuator into a fast achievable materials for long Using Diaphragm motion. It can also device life Microactuator", convert a high force, .diamond-solid. High stresses Proc. IEEE MEMS, low travel actuator involved Feb. 1996, pp 418- into a high travel, .diamond-solid. Generally high 423. medium force motion. power requirement .diamond-solid. IJ18, IJ27 Tapered A tapered magnetic .diamond-solid. Linearizes the .diamond-solid. Complex .diamond-solid. IJ14 magnetic pole can increase magnetic construction pole travel at the expense force/distance curve of force. Lever A, lever and fulcrum is .diamond-solid. Matches low .diamond-solid. High stress .diamond-solid.

IJ32, IJ36, IJ37 used to transform a travel actuator with around the fulcrum motion with small higher travei travel and high force requirements into a motion with .diamond-solid. Fulcrum area has longer travel and no linear movement, lower force. The lever and can be used for can also reverse the a fluid seal direction of travel. Rotary The actuator is .diamond-solid. High mechanical .diamond-solid. Complex .diamond-solid. IJ28 impeller connected to a rotary advantage construction impeller. A small .diamond-solid. The ratio of force .diamond-solid. Unsuitable for angular deflection of to travel of the pigmented inks the actuator results in actuator can be a rotation of the matched to the impeller vanes, which nozzle requirements push the ink against by varying the stationary vanes and numher of impeller out of the nozzle. vanes Acoustic A refractive or .diamond-solid. No moving parts .diamond-solid. Large area .diamond-solid. 1993 Hadimioglu lens diffractive (e.g. zone required et al, EUP 550,192 plate) acoustic lens is .diamond-solid. Only relevant for .diamond-solid. 1993 Elrod et al, used to concentrate acoustic ink jets EUP 572,220 sound waves. Sharp A sharp point is used .diamond-solid. Simple .diamond-solid. Difficult to .diamond-solid. Tone-jet conductive to concentrate an construction fabricate using point electrostatic field. standard VLSI processes for a surface ejecting ink- jet .diamond-solid. Only relevant for electrostatic ink jets

ACTUATOR MOTION Description Advantages Disadvantages Examples Volume The volume of the .diamond-solid. Simple .diamond-solid. High energy is .diamond-solid. Hewlett-Packard expansion actuator changes, construction in the typically required to Thermal Ink jet pushing the ink in all case of thermal ink achieve volume .diamond-solid. Canon Bubblejet directions. jet expansion. This leads to thermal stress, cavitation, and kogation in thermal ink jet implementations Linear, The actuator moves in .diamond-solid. Efficient .diamond-solid. High fabrication .diamond-solid. IJ01, IJ02, IJ04, normal to a direction normal to coupling to ink complexity may be IJ07, IJ11, IJ14 chip surface the print head surface. drops ejected required to achieve The nozzle is typically normal to the perpendicular in the line of surface motion movement. ParalleI to The actuator moves .diamond-solid. Suitable for .diamond-solid. Fabrication .diamond-solid. IJ12, IJ13, IJ15, chip surface parallel to the print planar fabrication complexity IJ33, IJ34, IJ35, head surface. Drop .diamond-solid. Friction IJ36 ejection may still be .diamond-solid. Stiction normal to the surface. Membrane An actuator with a .diamond-solid. The effective .diamond-solid. Fabrication .diamond-solid. 1982 Howkins push high force but small area of the actuator complexity U.S. Pat. No. 4,459,601 area is used to push a becomes the .diamond-solid. Actuator size stiff membrane that is membrane area .diamond-solid. Difficulty of in contact with the ink. integration in a VLSI process Rotary The actuator causes .diamond-solid. Rotary levers .diamond-solid. Device .diamond-solid. IJ05, IJ08, IJ13, the rotation of some may be used to complexity IJ28 element, such a grill or increase travel May have impeller .diamond-solid. Small chip area friction at a pivot requirements. point Bend The actuator bends .diamond-solid. A very small .diamond-solid. Requires the .diamond-solid. 1970 Kyser et al when energized. This change in actuator to be made U.S. Pat. No. 3,946,398 may be due to dimensions can be from at least two .diamond-solid. 1973 Stemme differential thermal converted to a large distinct layers, or to U.S. Pat. No. 3,747,120 expansion, motion. have a thermal .diamond-solid. IJ03, IJ09, IJ10, piezoelectric difference across the IJ19, IJ23, IJ24, expansion, actuator IJ25, IJ29, IJ30, magnetostriction, or IJ31, IJ33, IJ34, other form of relative IJ35 dimensional change. Swivel The actuator swivels .diamond-solid. Allows operation .diamond-solid. Inefficient .diamond-solid. IJ06 around a central pivot. where the net linear coupling to the ink This motion is suitable force on the paddle motion where there are is zero opposite forces .diamond-solid. Small chip area applied to opposite requirements sides of the paddle, e.g. Lorenz force. Straighten The actuator is .diamond-solid. Can be used with .diamond-solid. Requires careful .diamond-solid. IJ26, IJ32 normally bent, and shape memory balance of stresses straightens when alloys where the to ensure that the energized. austenic phase is quiescent bend is planar accurate Double The actuator bends in .diamond-solid. One actuator can .diamond-solid. Difficult to make .diamond-solid. IJ36, IJ37, IJ38 bend one direction when be used to power the drops ejected by one element is two nozzles. both bend directions energized, and bends .diamond-solid. Reduced chip identical. the other way when size. .diamond-solid. A small another element is .diamond-solid. Not sensitive to efficiency 1055 energized. ambient temperature compared to equivalent single bend actuators. Shear Energizing the .diamond-solid. Can increase the .diamond-solid. Not readily .diamond-solid. 1985 Fishbeck actuator causes a shear effective travel of applicable to other U.S. Pat. No. 4,584,590 motion in the actuator piezoelectric actuator material. actuators mechanisms Radial con- The actuator squeezes .diamond-solid. Relatively easy .diamond-solid. High force .diamond-solid. 1970 Zoltan USP striction an ink reservoir, to fabricate single required 3,683,212 forcing ink from a nozzles from glass .diamond-solid. Inefficient constricted nozzle. tubing as .diamond-solid. Difficult to macroscopic integrate with VLSI structures processes Coil/uncoil A coiled actuator .diamond-solid. Easy to fabricate .diamond-solid. Difficult to .diamond-solid. IJ17, IJ21, IJ34, uncoils or coils more as a planar VLSI fabricate for non- IJ35 tightly. The motion of process planar devices the free end of the .diamond-solid. Small area .diamond-solid. Poor out-of-plane actuator ejects the ink. required, therefore stiffness low cost Bow The actuator bows (or .diamond-solid. Can increase the .diamond-solid. Maximum travel .diamond-solid. IJ16, IJ18, IJ27 buckles) in the middle speed of travel is constrained when energized. .diamond-solid. Mechanically .diamond-solid. High force rigid required Push-Pull Two actuators control .diamond-solid. The structure is .diamond-solid. Not readily .diamond-solid. IJ18 a shulter. One actuator pinned at both ends, suitable for ink jets pulls the shutter, and so has a high out-of- which directly push the other pushes it. plane rigidity the ink Curl A set of actuators curl .diamond-solid. Good fluid flow .diamond-solid. Design .diamond-solid. IJ20, IJ42 inwards inwards to reduce the to the region behind complexity volume of ink that the actuator they enclose. increases efficiency Curl A set of actuators curl .diamond-solid. Relatively simple .diamond-solid. Relatively large .diamond-solid. IJ43 outwards outwards, pressurizing construction chip area ink in a chamber surrounding the actuators, and expelling ink from a nozzle in the chamber. Iris Multiple vanes enclose .diamond-solid. High efficiency .diamond-solid. High fabrication .diamond-solid.

IJ22 a volume of ink. These .diamond-solid. Small chip area complexity simultaneously rotate, .diamond-solid. Not suitable for reducing the volume pigmented inks between the vanes. Acoustic The actuator vibrates .diamond-solid. The actuator can .diamond-solid. Large area .diamond-solid. 1993 Hadimioglu vibration at a high frequency. be physically distant required for et al, EUP 550,192 from the ink efficient operation .diamond-solid. 1993 Elrod et al, at useful frequencies EUP 572,220 .diamond-solid. Acoustic coupling and crosstalk .diamond-solid. Complex drive circuitry .diamond-solid. Poor control of drop volume and position None In various ink jet .diamond-solid. No moving parts .diamond-solid. Various other .diamond-solid. Silverbrook, EP designs the actuator tradeoffs are 0771 658 A2 and does not move. required to related patent eliminate moving applications parts .diamond-solid. Tone-jet

NOZZLE REFILL METHOD Description Advantages Disadvantages Examples Surface This is the normal way .diamond-solid. Fabrication .diamond-solid. Low speed .diamond-solid. Thermal ink jet tension that ink jets are simplicity .diamond-solid. Surface tension .diamond-solid. Piezoelectric ink refilled. After the .diamond-solid. Operational force relatively jet actuator is energized, simplicity small compared to .diamond-solid. IJ01-IJ07, IJ10- it typically returns actuator force IJ14, IJ16, IJ20, rapidly to its normal .diamond-solid. Long refill time IJ22-IJ45 position. This rapid usually dominates return sucks in air the total repetition through the nozzle rate opening. The ink surface tension at the nozzle then exerts a small force restoring the meniscus to a minimum area. This force refills the nozzle. Shuttered Ink to the nozzle .diamond-solid. High speed .diamond-solid. Requires .diamond-solid. IJ08, IJ13, IJ15, oscillating chamber is provided at .diamond-solid. Low actuator common ink IJ17, IJ18, IJ19, ink pressure a pressure that energy, as the pressure oscillator IJ21 oscillates at twice the actuator need only .diamond-solid. May not be drop ejection open or close the suitable for frequency. When a shutter, instead of pigmented inks drop is to be ejected, ejecting the ink drop the shutter is opened for 3 half cycles: drop ejection, actuator return, and refill. The shutter is then closed to prevent the nozzle chamber emptying during the next negative pressure cycle. Refill After the main .diamond-solid. High speed, as .diamond-solid. Requires two .diamond-solid. IJ09 actuator actuator has ejected a the nozzle is independent drop a second (refill) actively refilled actuators per nozzle actuator is energized. The refill actuator pushes ink into the nozzle chamber. The refill actuator returns slowly, to prevent its return from emptying the chamber again. Positive ink The ink is held a slight .diamond-solid. High refill rate, .diamond-solid. Surface spill .diamond-solid. Silverbrook, EP pressure positive pressure. therefore a high must be prevented 0771 658 A2 and After the ink drop is drop repetition rate .diamond-solid. Highly related patent ejected, the nozzle is possible hydrophobic print applications chamber fills quickly head surfaces are .diamond-solid. Alternative for:, as surface tension and required IJ01-IJ07, IJ10-IJ14, ink pressure hoth IJ16, IJ20, IJ22-IJ45 operate to refill the nozzle.

METHOD OF RESTRICTING BACK-FLOW THROUGH INLET Description Advantages Disadvantages Examples Long inlet The ink inlet channel .diamond-solid. Design simplicity .diamond-solid. Restricts refill .diamond-solid. Thermal ink jet channel to the nozzle chamber .diamond-solid. Operational rate .diamond-solid. Piezoelectric ink is made long and simplicity .diamond-solid. May result in a jet relatively narrow, .diamond-solid. Reduces relatively large chip .diamond-solid. IJ42, IJ43 relying on viscous crosstalk area drag to reduce inlet .diamond-solid. Only partially back-flow. effective Positive ink The ink is under a .diamond-solid. Drop selection .diamond-solid. Requires a .diamond-solid. Silverbrook, EP pressure positive pressure, so and separation method (such as a 0771 658 A2 and that in the quiescent forces can be nozzle rim or related patent state some of the ink reduced effective applications drop already protrudes .diamond-solid. Fast refill time hydrophobizing, or .diamond-solid. Possible from the nozzle. both) to prevent operation of the This reduces the flooding of the following: IJ01- pressure in the nozzle ejection surface of IJ07, IJ09-IJ12, chamber which is the print head. IJ14, IJ16, IJ20, required to eject a IJ22, , IJ23-IJ34, certain volume of ink. IJ36-IJ41, IJ44 The reduction in chamber pressure results in a reduction in ink pushed out through the inlet. Baffle One or more baffles .diamond-solid. The refill rate is .diamond-solid. Design .diamond-solid. HP Thermal Ink are placed in the inlet not as restricted as complexity Jet ink flow. When the the long inlet .diamond-solid. May increase .diamond-solid. Tektronix actuator is energized, method. fabrication piezoelectric ink jet the rapid ink .diamond-solid. Reduces complexity (e.g. movement creates crosstalk Tektronix hot melt eddies which restrict Piezoelectric print the flow through the heads). inlet. The slower refill process is unrestricted, and does not result in eddies. Flexible flap In this method recently .diamond-solid. Significantly .diamond-solid. Not applicable to .diamond-solid. Canon restricts disclosed by Canon, reduces back-flow most ink jet inlet the expanding actuator for edge-shooter configurations (bubble) pushes on a thermal ink jet .diamond-solid. Increased flexible flap that devices fabrication restricts the inlet. complexity .diamond-solid. Inelastic deformation of polymer flap results in creep over extended use Inlet filter A filter is located .diamond-solid. Additional .diamond-solid. Restricts refill .diamond-solid. IJ04, IJ12, IJ24, between the ink inlet advantage of ink rate IJ27, IJ29, IJ30 and the nozzle filtration .diamond-solid. May result in chamber. The filter .diamond-solid. Ink filter may be complex has a multitude of fabricated with no construction small holes or slots, additional process restricting ink flow. steps The filter also removes particles which may block the nozzle. Small inlet The ink inlet channel .diamond-solid. Design simplicity .diamond-solid. Restricts refill .diamond-solid. IJ02, IJ37, IJ44 compared to the nozzle chamber rate to nozzle has a substantially .diamond-solid. May result in a smaller cross section relatively large chip than that of the nozzle, area resulting in easier ink .diamond-solid. Only partially egress out of the nozzle effective than out of the inlet. Inlet shutter A secondary actuator .diamond-solid. Increases speed .diamond-solid. Requires separate .diamond-solid. IJ09 controls the position of of the ink-jet print refill actuator and a shutter, closing off head operation drive circuit the ink inlet when the main actuator is energized. The inlet is The method avoids the .diamond-solid. Back-flow .diamond-solid. Requires careful .diamond-solid. IJ01, IJ03, IJ05, located problem of inlet back- problem is design to minimize IJ06, IJ07, IJ10, behind the flow by arranging the eliminated the negative IJ11, IJ14, IJ16, ink-pushing ink-pushing surface of pressure behind the IJ22, IJ23, IJ25, surface the actuator between paddle IJ28, IJ31, IJ32, the inlet and the IJ33, IJ34, IJ35, nozzle. IJ36, IJ39, IJ40, IJ41 Part of the The actuator and a .diamond-solid. Significant .diamond-solid. Small increase in .diamond-solid. IJ07, IJ20, IJ26, actuator wall of the ink reductions in back- fabrication IJ38 moves to chamber are arranged flow can be complexity shut off the so that the motion of achieved inlet the actuator closes off .diamond-solid. Compact designs the inlet. possible Nozzle In some configurations .diamond-solid. Ink back-flow .diamond-solid. None related to .diamond-solid. Silverbrook, EP actuator of ink jet, there is no problem is ink back-flow on 0771 658 A2 and does not expansion or eliminated actuation related patent result in ink movement of an applications back-flow actuator which may .diamond-solid. Valve-jet cause ink back-flow .diamond-solid. Tone-jet through the inlet.

NOZZLE CLEARING METHOD Description Advantages Disadvantages Examples Normal All of the nozzles are .diamond-solid. No added .diamond-solid. May not be .diamond-solid. Most ink jet nozzle firing fired periodically, complexity on the sufficient to systems before the ink has a print head displace dried ink .diamond-solid. IJ01, IJ02, IJ03, chance to dry. When IJ04, IJ05, IJ06, not in use the nozzles IJ07, IJ09, IJ10, are sealed (capped) IJ11, IJ12, IJ14, against air. IJ16, IJ20, IJ22, The nozzle firing is IJ23, IJ24, IJ25, usually performed IJ26, IJ27, IJ28, during a special IJ29, IJ30, IJ31, clearing cycle, after IJ32, IJ33, IJ34, first moving the print IJ36, IJ37, IJ38, head to a cleaning IJ39, IJ40;, IJ41, station. IJ42, IJ43, IJ44, IJ45 Extra In systems which heat .diamond-solid. Can be highly .diamond-solid. Requires higher .diamond-solid. Silverbrook, EP power to the ink, but do not boil effective if the drive voltage for 0771 658 A2 and ink heater it under normal heater is adjacent to clearing related patent situations, nozzle the nozzle .diamond-solid. May require applications clearing can be larger drive achieved by over- transistors powering the heater and boiling ink at the nozzle. Rapid The actuator is fired in .diamond-solid. Does not require .diamond-solid. Effectiveness .diamond-solid. May be used succession rapid succession. In extra drive circuits depends with: IJ01, IJ02, of actuator some configurations, on the print head substantially upon IJ03, IJ04, IJ05, purses this may cause heat .diamond-solid. Can be readily the configuration of IJ06, IJ07, IJ09, build-up at the nozzle controlled and the inkjet nozzle IJ10, IJ11, IJ14, which boils the ink, initiated by digital IJ16, IJ20, IJ22, clearing the nozzle. In logic IJ23, IJ24, IJ25, other situations, it may IJ27, IJ28, IJ29, cause sufficient IJ30, IJ31, IJ32, vibrations to dislodge IJ33, IJ34, IJ36, clogged nozzles. IJ37, IJ38, IJ39, IJ40, IJ41, IJ42, IJ43, IJ44, IJ45 Extra Where an actuator is .diamond-solid. A simple .diamond-solid. Not suitable .diamond-solid. May be used power to not normally driven to solution where where there is a with: IJ03, IJ09, ink pushing the limit of its motion, applicable hard limit to IJ16, IJ20, IJ23, actuator nozzle clearing may be actuator movement IJ24, IJ25, IJ27, assisted by providing IJ29, IJ30, IJ31, an enhanced drive IJ32, IJ39, IJ40, signal to the actuator. IJ41, IJ42, IJ43, IJ44, IJ45 Acoustic An ultrasonic wave is .diamond-solid. A high nozzle .diamond-solid. High .diamond-solid. IJ08, IJ13, IJ15, resonance applied to the ink clearing capability implementation cost IJ17, IJ18, IJ19, chamber. This wave is can be achieved if system does not IJ21 of an appropriate .diamond-solid. May be already include an amplitude and implemented at very acoustic actuator frequency to cause low cost in systems sufficient force at the which already nozzle to clear include acoustic blockages. This is actuators easiest to achieve if the ultrasonic wave is at a resonant frequency of the ink cavity. Nozzle A microfabricated .diamond-solid. Can clear .diamond-solid. Accurate .diamond-solid. Silverbrook, EP clearing plate is pushed against severely clogged mechanical 0771 658 A2 and plate the nozzles. The plate nozzles alignment is related patent has a post for every required applications nozzle. A post moves .diamond-solid. Moving parts are through each nozzle, required displacing dried ink. .diamond-solid. There is risk of damage to the nozzles .diamond-solid. Accurate fabrication is required Ink The pressure of the ink .diamond-solid. May be effective .diamond-solid. Requires .diamond-solid. May be used pressure is temporarily where other .diamond-solid. pressure pump or with all IJ series pulse increased so that ink methods cannot be other pressure ink jets streams from all of the used actuator nozzles. This may be .diamond-solid. Expensive used in conjunction .diamond-solid. Wasteful of ink with actuator energizing. Print head A flexible `blade` is .diamond-solid. Effective for .diamond-solid. Difficult to use if .diamond-solid. Many ink jet wiper wiped across the print planar print head print head surface is systems head surface. The surfaces non-planar or very blade is usually .diamond-solid. Low cost fragile fabricated from a .diamond-solid. Requires flexible polymer, e.g. mechanical parts rubber or synthetic .diamond-solid. Blade can wear elastomer. out in high volume print systems Separate A separate heater is .diamond-solid. Can be effective .diamond-solid. Fabrication .diamond-solid. Can be used with ink boiling provided at the nozzle where other nozzle complexity many IJ series ink beater although the normal clearing methods jets drop e-ection cannot be used mechanism does not .diamond-solid. Can be require it. The heaters implemented at no do not require additional cost in individual drive some ink jet circuits, as many configurations nozzles can be cleared simultaneously, and no imaging is required.

NOZZLE PLATE CONSTRUCTION Description Advantages Disadvantages Examples Electro- A nozzle plate is .diamond-solid. Fabrication .diamond-solid. High .diamond-solid. Hewlett Packard formed separately fabricated simplicity temperatures and Thermal Ink jet nickel from electroformed pressures are nickel, and bonded to required to bond the print head chip. nozzle plate .diamond-solid. Minimum thickness constraints .diamond-solid. Differential thermal expansion Laser Individual nozzle .diamond-solid. No masks .diamond-solid. Each hole must .diamond-solid. Canon Bubblejet ablated or holes are ablated by an required be individually .diamond-solid. 1988 Sercel et drilled intense UV laser in a .diamond-solid. Can be quite fast formed al., SPIE, Vol. 998 polymer nozzle plate, which is .diamond-solid. Some control .diamond-solid. Special Excimer Beam typically a polymer over nozzle profile equipment required Applications, pp. such as polyimide or is possible .diamond-solid. Slow where there 76-83 polysulphone .diamond-solid. Equipment are many thousands .diamond-solid. 1993 Watanabe required is relatively of nozzles per print et al., U.S. Pat. No. low cost head 5,208,604 .diamond-solid. May produce thin burrs at exit holes Silicon A separate nozzle .diamond-solid. High accuracy is .diamond-solid. Two part .diamond-solid. K. Bean, IEEE micro- plate is attainable construction Transactions on machined micromachined from .diamond-solid. High cost Electron Devices, single crystal silicon, .diamond-solid. Requires Vol. ED-25, No. 10, and bonded to the precision alignment 1978, pp 1185-1195 print head wafer. .diamond-solid. Nozzles may be .diamond-solid. Xerox 1990 clogged by adhesive Hawkins et al., U.S. Pat. No. 4,899,181 GIass Fine glass capillaries .diamond-solid. No expensive .diamond-solid. Very small .diamond-solid. 1970 Zoltan U.S. Pat. No. capillaries are drawn from glass equipment required nozzle sizes are 3,683,212 tubing. This method .diamond-solid. Simple to make difficult to form has been used for single nozzles .diamond-solid. Not suited for making individual mass production nozzles, but is difficult to use for bulk manufacturing of print heads with thousands of nozzles. Monolithic, The nozzle plate is .diamond-solid. High accuracy .diamond-solid. Requires .diamond-solid. Silverbrook, EP surface deposited as a layer (<1 .mu.m) sacrificial layer 0771 658 A2 and micro- using standard VLSI .diamond-solid. Monolithic under the nozzle related patent machined deposition techniques. .diamond-solid. Low cost plate to form the applications using VLSI Nozzles are etched in .diamond-solid. Existing nozzle chamber .diamond-solid. IJ01, IJ02, IJ04, Iitho- the nozzle plate using processes can be .diamond-solid. Surface may be IJ11, IJ12, IJ17, graphic VLSI lithography and used fragile to the touch IJ18, IJ20, IJ22, processes etching. IJ24, IJ27, IJ28, IJ29, IJ30, IJ31, IJ32, IJ33, IJ34, IJ36, IJ37, IJ38, IJ39, IJ40, IJ41, IJ42, IJ43, IJ44 Monolithic, The nozzle plate is a .diamond-solid. High accuracy .diamond-solid. Requires long .diamond-solid. IJ03, IJ05, IJ06, etched buried etch stop in the (<1 .mu.m) etch times IJ07, IJ08, IJ09, through wafer. Nozzle .diamond-solid. Monolithic .diamond-solid. Requires a IJ10, IJ13, IJ14, substrate chambers are etched in .diamond-solid. Low cost support wafer IJ15, IJ16, IJ19, the front of the wafer, .diamond-solid. No differential IJ21, IJ23, IJ25, and the wafer is expansion IJ26 thinned from the back side. Nozzles are then etched in the etch stop layer. No nozzle Various methods have .diamond-solid. No nozzles to .diamond-solid. Difficult to .diamond-solid. Ricoh 1995 plate been tried to eliminate become clogged control drop Sekiya et al U.S. Pat. No. the nozzles entirely, to position accurately 5,412,413 prevent nozzle .diamond-solid. Crosstalk .diamond-solid. 1993 Hadimioglu clogging. These problems et al EUP 550,192 include thermal bubble .diamond-solid. 1993 Elrod et al mechanisms and EUP 572,220 acoustic lens mechanisms Trough Each drop ejector has .diamond-solid. Reduced .diamond-solid. Drop firing .diamond-solid. IJ35 a trough through manufacturing direction is sensitive which a paddle moves. complexity to wicking. There is no nozzle .diamond-solid. Monolithic plate. Nozzle slit The elimination of .diamond-solid. No nozzles to .diamond-solid. Difficult to .diamond-solid. 1989 Saito et al instead of nozzle holes and become clogged control drop U.S. Pat. No. 4,799,668 individual replacement by a slit position accurately nozzles encompassing many .diamond-solid. Crosstalk actuator positions problems reduces nozzle clogging, but increases crosstalk due to ink surface waves

DROP EJECTION DIRECTION Description Advantages Disadvantages Examples Edge Ink flow is along the .diamond-solid. Simple .diamond-solid. Nozzles limited .diamond-solid. Canon Bubble (`edge surface of the chip, construction to edge 1979 Endo et al GB shooter`) and ink drops are .diamond-solid. No silicon .diamond-solid. High resolution patent 2,007,162 ejected from the chip etching required is difficult .diamond-solid. Xerox heater-in- edge. .diamond-solid. Good heat .diamond-solid. Fast color pit 1990 Hawkins et sinking via substrate printing requires al U.S. Pat. No. 4,899,181 .diamond-solid. Mechanically one print head per .diamond-solid. Tone-jet strong color .diamond-solid. Ease of chip handing Surface Ink flow is along the .diamond-solid. No bulk silicon .diamond-solid. Maximum ink .diamond-solid. Hewlett-Packard (`roof surface of the chip, etching required flow is severely TIJ 1982 Vaught et shooter`) and ink drops are .diamond-solid. Silicon can make restricted al U.S. Pat. No. 4,490,728 ejected from the chip an effective heat .diamond-solid. IJ02, IJ11, IJ12, surface, normal to the sink IJ20, IJ22 plane of the chip. .diamond-solid. Mechanical strength Through Ink flow is through the .diamond-solid. High ink flow .diamond-solid. Requires bulk .diamond-solid. Silverbrook, EP chip, chip, and ink drops are .diamond-solid. Suitable for silicon etching 0771 658 A2 and forward ejected from the front pagewidth print related patent (`up surface of the chip. heads applications shooter`) .diamond-solid. High nozzle .diamond-solid. IJ04, IJ17, IJ18, packing density IJ24, IJ27-IJ45 therefore low manufacturing cost Through Ink flow is through the .diamond-solid. High ink flow .diamond-solid. Requires wafer .diamond-solid. IJ01, IJ03, IJ05, chip, chip, and ink drops are .diamond-solid. Suitable for thinning IJ06, IJ07, IJ08, reverse ejected from the rear pagewidth print .diamond-solid. Requires special IJ09, IJ10, IJ13, (`down surface of the chip. heads handling during IJ14, IJ15, IJ16, shooter`) .diamond-solid. High nozzle manufacture IJ19, IJ21, IJ23, packing density IJ25, IJ26 therefore low manufacturing cost Through Ink flow is through the .diamond-solid. Suitable for .diamond-solid. Pagewidth print .diamond-solid. Epson Stylus actuator actuator, which is not piezoelectric print heads require Tektronix hot fabricated as part of heads several thousand melt piezoelectric the same substrate as connections to drive ink jets the drive transistors. circuits .diamond-solid. Cannot be manufactured in standard CMOS fabs .diamond-solid. Complex assembly required

INK TYPE Description Advantages Disadvantages Examples Aqueous, Water based ink which .diamond-solid. Environmentally .diamond-solid. Slow drying .diamond-solid. Most existing ink dye typically contains: friendly .diamond-solid. Corrosive jets water, dye, surfactant, .diamond-solid. No odor .diamond-solid. Bleeds on paper .diamond-solid. All IJ series ink humectant, and .diamond-solid. May jets biocide. strikethrough .diamond-solid. Silverbrook, EP Modern ink dyes have .diamond-solid. Cockles paper 0771 658 A2 and high water-fastness, related patent light fastness applications Aqueous, Water based ink which .diamond-solid. Environmentally .diamond-solid. Slow drying .diamond-solid. IJ02, IJ04, IJ21, pigment typically contains: friendly .diamond-solid. Corrosive IJ26, IJ27, IJ30 water, pigment, .diamond-solid. No odor .diamond-solid. Pigment may .diamond-solid. Silverbrook, EP surfactant, humectant, .diamond-solid. Reduced bleed clog nozzles 0771 658 A2 and and biocide. .diamond-solid. Reduced wicking .diamond-solid. Pigment may related patent Pigments have an .diamond-solid. Reduced clog actuator applications advantage in reduced strikethrough mechanisms .diamond-solid. Piezoelectric ink- bleed, wicking and .diamond-solid. Cockles paper jets strikethrough. .diamond-solid. Thermal ink jets (with significant restrictions) Methyl MEK is a highly .diamond-solid. Very fast drying .diamond-solid. Odorous .diamond-solid. All IJ series ink Ethyl volatile solvent used .diamond-solid. Prints on various .diamond-solid. Hammable jets Ketone for industrial printing substrates such as (MEK) on difficult surfaces metals and plastics such as aluminum cans. Alcohol Alcohol based inks .diamond-solid. Fast drying .diamond-solid. Slight odor .diamond-solid. All IJ series ink (ethanol, 2- can be used where the .diamond-solid. Operates at sub- .diamond-solid. Hammable jets butanol, printer must operate at freezing and others) temperatures below temperatures the freezing point of .diamond-solid. Reduced paper water. An example of cockle this is in-camera .diamond-solid. Low cost consumer photographic printing. Phase The ink is solid at .diamond-solid. No drying time- .diamond-solid. High viscosity .diamond-solid. Tektronix hot change room temperature, and ink instantly freezes .diamond-solid. Printed ink melt piezoelectric (hot melt) is melted in the print on the print medium typically has a ink jets head before jetting. .diamond-solid. Almost any print `waxy` feel .diamond-solid. 1989 Nowak Hot melt inks are medium can be used .diamond-solid. Printed pages U.S. Pat. No. 4,820,346 usually wax based, .diamond-solid. No paper cockle may `block` .diamond-solid. All IJ series ink with a melting point occurs .diamond-solid. Ink temperature jets around 80.degree. C. After .diamond-solid. No wicking may be above the jetting the ink freezes occurs curie point of almost instantly upon .diamond-solid. No bleed occurs permanent magnets contacting the print .diamond-solid. No strikethrough .diamond-solid. Ink heaters medium or a transfer occurs consume power roller. .diamond-solid. Long warm-up time Oil Oil based inks are .diamond-solid. High solubility .diamond-solid. High viscosity: .diamond-solid. All IJ series ink extensiveiy used in medium for some this is a significant jets offset printing. They dyes limitation for use in have advantages in .diamond-solid. Does not cockle ink jets, which improved paper usually require a characteristics on .diamond-solid. Does not wick low viscosity. Some paper (especially no through paper short chain and wicking or cockle). multi-branched oils Oil soluble dies and have a sufficiently pigments are required. low viscosity. .diamond-solid. Slow drying Micro- A microemulsion is a .diamond-solid. Stops ink bleed .diamond-solid. Viscosity higher .diamond-solid. All IJ series ink emulsion stable, self forming .diamond-solid. High dye than water jets emulsion of oil, water, solubiiity .diamond-solid. Cost is slightly and surfactant. The .diamond-solid. Water, oil, and higher than water characteristic drop size amphiphilic soluble based ink is less than 100 nm, dies can be used .diamond-solid. High surfactant and is determined by .diamond-solid. Can stabilize concentration the preferred curvature pigment required (around of the surfactant. suspensions 5%)



Top